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Figure 1: The visual analytics system for exploration and comparison of movements derived from geo-located microblog messages consists of
multiple linked views: (1) map, (2) timeline, (3) velocity distribution & filtering, (4) searchboxes, (5) grid creation panel, (6) comparison interface. The
map shows distribution and direction of pilgrim movements in Mecca, Sep. 2015. Patterns (labeled a—e) are described in a case study (Section 5.1).

ABSTRACT

Geo-tagged microblog data covers billions of movement patterns on
a global and local scale. Understanding these patterns could guide
urban and traffic planning or help coping with disaster situations.
We present a visual analytics system to investigate travel trajectories
of people reconstructed from microblog messages. To analyze sea-
sonal changes and events and to validate movement patterns against
other data sources, we contribute highly interactive visual compari-
son methods that normalize and contrast trajectories as well as den-
sity maps within a single view. We also compute an adaptive hier-
archical graph from the trajectories to abstract individual movements
into higher-level structures. Specific challenges that we tackle are,
among others, the spatio-temporal sparsity of the data, the volume of
data varying by region, and a diverse mix of means of transportation.
The applicability of our approach is presented in three case studies.
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1 INTRODUCTION

The whole world is moving. Around 90,000 flights are scheduled
each day, the number of cars surpassed one billion, and we travel
around 130,000 kilometers in our lives by foot. Human movement
patterns are valuable to better understand and improve our lives in
many domains: City planners enhance living conditions by optimiz-
ing traffic flow, housing, shopping, and working areas [27]. Road
networks and traffic control can be optimized with knowledge about
driving behavior and route congestions [28]. For the management
and prevention of crises, trajectory data is used to simulate and ana-
lyze crowded situations [37]. In epidemic research, movement data
is a basis for propagation models [23].

When global movement is of interest, patterns are usually derived
from flight schedules. On a lower scale, cell phone and public trans-
portation data provide valuable information of urban movement such
as daily commute [36]. Unfortunately, these datasets are often in-
complete and of limited temporal and geographical resolution and
scale. They can be expensive and hard to retrieve because they are
monetized by large companies or cover privacy-sensitive data.

With the rise of smartphones and social media platforms, hu-
mans have become sensors themselves, contributing geo-located data
points every day. On microblog platforms, many users send public
messages with location information that can be used to retrieve a tra-
jectory estimating the users’ movement. Twitter users, for example,
produce more than 200 million geo-located messages a month [43].
Based on this data, we can reconstruct movements of different scale,



from global air traffic to local ground transportation. The data is
available for large timespans and often free to record and analyze.

Recently, a number of research projects have started to interpret
movements reconstructed from microblogging platforms [13, 18, 19,
20, 25, 38, 42, 45] (see Section 2). While these approaches already
reconstruct and classify trajectories, we still face many open research
questions and challenges: Are the reconstructed trajectories reflect-
ing real world patterns, comparable to explicit movement data for
urban analysis? What similarities and differences exist when com-
paring such heterogeneous datasets and how can we make them vis-
ible? How to deal with varying spatial and temporal granularities,
distribution, and volumes?

To address these questions, we contribute TravelDiff, a visual ana-
Iytics system (Section 3) to explore and compare reconstructed trajec-
tories from geo-located microblog messages. It combines visualiza-
tion methods to depict the differences of explicit movement data and
movements derived from tweets with interactive filters (Section 4).
We propose different approaches like alpha blending and edge splat-
ting that work on the raw data. Moreover, we present a hierarchical
aggregation method that allows for a smooth transition from overview
to detail. The applicability of our system is presented in Section 5.
We first explore events based on temporal changes (Section 5.1). In
particular, we focus on the pilgrimage to Mecca in September 2015
where we identify hotspots and travel directions. We then exemplar-
ily evaluate how the reconstructed movement datasets reflect human
mobility patterns by comparing the movements to daily city com-
mute (Section 5.2) and to flight schedules (Section 5.3). We consider
our approach as a step towards a better understanding of movement
patterns derived from microblog messages and as an enabler for a
comparative analysis of such data (Section 6).

2 RELATED WORK

The visualization of movement data is a broad research field and was
surveyed by Andrienko and Andrienko [5]. They demonstrate how
movement data can be analyzed in 2D or 3D map overlays as well as
with timeline views and hierarchy representations. Our work focuses
on the reconstruction, exploration, and comparison of movement data
derived from social media (i.e., microblog services). Hence, we dis-
cuss specifically those visual analysis approaches that (1) reconstruct
movement data from geo-located microblog messages or (2) support
the comparison of trajectories.

2.1 Movements from Microblog Data

While the visual analysis of textual content from social media is a
well-developed research field, movement extraction from social me-
dia recently gained more and more attention. Senseplace2 [33] and
ScatterBlogs2 [14], and approaches by Fuchs et al. [25] allow for
a location-based analysis of Twitter messages. Others even trace
the geographic path and evolution of topics over time: Sakaki et
al. [38] extracts earthquake related microblog messages and applies
a Kalman filter to reconstruct an earthquake’s trajectory. Similarly,
Senaratne et al [42] looks for hotspots of a certain topic and recon-
struct a trajectory of a musician’s concert tour across the USA.
Besides content analysis there is new research that investigates hu-
man movement derived from geo-located microblog data. Chae et
al. [18] reconstruct movements of Twitter users and map them to the
road network to overcome data irregularities. They further present
an expert-driven interactive analysis to identify outliers. Interactive
filtering of movements derived from Twitter is also shown by Chen et
al. [19]. In their work origin—destination (OD) patterns can be found
with a focus+context technique. Chen et al. [20] also developed a
full-fledged system for the analysis of movements from Sina Weibo,
a Chinese microblogging platform. They address major challenges
such as large data volumes, irregular sampling, data sparsity, and re-
sulting uncertainty. A Gaussian-mixture model is used to categorize
movements to different means of transportation. While our main fo-
cus is on data comparison, we also provide a categorization method
to classify means of transportation. By contrast, our method is rule-
based and allows for an interactive trade-off between precision and
recall. With a more regional and application-specific focus, Blanford

et al. [13] analyze cross-border movement in Africa derived from
Twitter and build graph models to aggregate the movements. Flow
Sampler [22] also adapts a graph-based methods and infers move-
ment pathways from point-based geo-located microblog data to ex-
plore movement flow. Recently, Landesberger et al. [45] contribute
another visual approach to analyze temporal changes. While they
also present a comparison graph, they do not provide a hierarchical
structure that allows for a smooth transition between overview and
detail. Also, they focus on Twitter analysis only and do not compare
the patterns to other data.

2.2 Comparison of Trajectories and Graphs

In their taxonomy of visual comparison, Gleicher et al. [26] discern
three types of comparison methods: juxtaposition, overlay, and ex-
plicit encoding. These general approaches are applicable to many vi-
sualization problems but have different advantages and limitations.
For a visual comparison of trajectories, we could juxtapose small
multiples, each representing a different version of the dataset [29].
Also, different groups of trajectories can be overlaid while discerning
the groups by coloring [5] or 3D stacking [5, 44]. Overlay or juxta-
position approaches work well to reveal coarse differences. However,
overlays get difficult to read if too many visual entities overlap and,
in juxtaposed images, only large differences can be retrieved easily
while identifying small changes becomes a spot-the-difference game.
Since we want to compare rather subtle differences between variants
of similar movement networks, we focus on explicit encoding: differ-
ences and commonalities are explicitly highlighted in order to guide
the viewer to interesting patterns.

To gain overview of massive trajectory data, graphs provide the
necessary level of abstraction by aggregating trajectories to transi-
tions [5]. Various approaches for visual graph comparison have al-
ready been proposed [4, 46]. Also related are dynamic graph visual-
ization techniques, which compare changing graphs over time [10].
Among the comparison approaches, some employ explicit encod-
ings: In node-link diagrams, differences are usually encoded with
colors [7, 8, 9, 40]. Also, adjacency matrix representations show dif-
ferences between two graphs using color [11] or glyphs [32]. In ma-
trix representations, however, the geographic information, which is
important for our analysis scenario, is not preserved. In an interactive
comparison approach, Beck et al. [12] compute union, intersection,
and difference only on demand and thereby let the user control what
should be visualized.

We apply a similar interactive approach but in a hierarchical man-
ner, similar to [3], giving the user even more control over the merging
and filtering process of trajectories. We offer both, the visual analysis
of a single group of trajectories as well as the visual comparison of
two groups of trajectories in a diff view.

3 SYSTEM DESIGN

Geo-located Twitter data and its reconstructed movements have cer-
tain peculiarities that require special treatment. We identified four
specifics (S1-S4) and resulting requirements that go beyond common
movement analysis practices:

S1 Implicit and unlabeled data. Movements need to be recon-
structed from geo-located microblog messages. This requires
several preprocessing steps, including bot removal and catego-
rization of means of transportation.

S2 Massive and unstructured. From about seven million tweets a
day, the reconstructed movement data is massive but often only
consist of origin and destination points. Hence, movements do
not follow an underlying network (e.g. roads). This can result
in overplotting and cluttering. Clear visualizations, which pre-
serve the density distribution are needed.

S3 Varying scale and resolution. Analysts are interested in move-
ments of different scale, from commutes to intercontinental
flights. However, varying by region, data resolution is low. De-
tailed visualization of uncertain movement can be misleading.
Adaptive data aggregation helps to solve the challenge.
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Figure 2: The abstract analysis process consists of an exploration part
and a comparison part. Colors indicate an exploratory analysis for two
different datasets, that precedes the comparative analysis.

S4 Uneven distribution and unknown quantities. Different data
has different characteristics, such as resolution, distribution,
and structure. Moreover, it is difficult to compare quantities
derived from microblogs to real world quantities such as num-
ber of travelers. Normalization and comparison methods that
handle different data distribution and outliers are needed.

With respect to these data specifics and resulting requirements, our
analytics system (see Figure 1) orchestrates visual means to explore
and compare large movement data of different transportation means,
in different views. Using comparison visualizations, we contrast the
data to other datasets or analyze seasonal changes and events in the
microblog movements. All views are connected with brushing and
linking. North and Shneiderman [35] showed in a user study that
multiple coordinated views can improve user performance by 30—
80% over detail-only and uncoordinated interfaces for most tasks.

Before we explain the design rationales (Section 4) based on the
identified requirements, we want to give a brief overview of the anal-
ysis process, illustrated in Figure 2. The analyst starts the exploration
process by selecting a region and time of interest. This is done with
a polygon tool and a calendar widget. After data querying and load-
ing, the movements can be explored. The analyst may first take a
look at the map, located in the center (see Figure 1, 1), exploring spa-
tial movement distribution and flow of messages. The map provides
both detail visualizations for investigating the raw data and layers ag-
gregating data for overview and advanced filtering. The abstracting
structure—a hierarchically aggregated graph model—is configured in
the grid configuration panel (5). The timeline view (2) allows for tem-
poral navigation and analysis of time-dependent patterns. Depending
on the analysis goals, the movements might be filtered by means of
transportation; a scatterplot (3) shows the velocity distribution for the
results. The system supports keyword filters and a geographic search
to quickly jump to a specific location (4). For data comparison, a
second dataset can be loaded, e.g., Twitter, flight, or taxi data. For a
comparative analysis, the interface to the right (6) allows switching
between the two datasets and a comparison visualization. Compar-
isons are either done on a raw data level or in the aggregated model.

4 APPROACH

TravelDiff integrates a blend of approaches that address the identi-
fied data specifics and requirements in order. Each of them (S1-S4)
is described in detail in the following. We first discuss trajectory re-
construction and other preprocessing steps (Section 4.1). Secondly,
to overcome occlusion and to address varying data distribution, we
present a splatting-based visualization method (Section 4.2). We then
introduce an aggregation technique that allows for abstraction and
stepwise visual transition from overview to detail (Section 4.3), be-
fore we present visual comparison approaches (Section 4.4).

Figure 3: Rule-based categorization to assign the most likely means of
transportation. Fuzziness can be interactively controlled with a preci-
sion&recall slider.

4.1 Preprocessing

To reconstruct movements from Twitter messages (S1), we apply a
set of methods to sort and filter the data. We improve data quality by
eliminating computer-generated messages and use a rule-based cate-
gorization to classify movements according to their means of trans-
portation.

Trajectory Composition Around 1-2% of the messages from
Twitter contain detailed geo-location consisting of latitude and lon-
gitude information. With respect to overall volumes of around 500
million tweets a day [2], it still sums up to around 200 million geo-
located messages per month. Many users share messages frequently,
i.e., several times a day or a week. From the location and tempo-
ral information, movement trajectories can be derived. We define a
trajectory TR as follows.

TR= ((p],ll),(pz,lz),,.,,(pn,ln)) witht; <tjyq fori=1,2,...,n—1.

pi is the geo-location of a message at time #;.

There is a varying number of single messages that cannot be con-
nected to any movement. The number of reconstructed trajectories
highly depends on the selected area (region and size) and timeframe.
On average, we are able to connect about 30% of the loaded messages
to trajectories when the timeframe is at least a day.

Bot Detection and Filtering Twitter contains a large number of
computer-generated (bot) messages. While we cannot guarantee to
filter out all bot messages, we can significantly reduce their amount
by applying content and movement-based filters.

e Content-based filters are widely used for bot removal in mi-
croblog data. We apply basic techniques, based on the observa-
tions by Lee et al. [30]. This includes a dictionary of keywords,
such as weather report and special offer, defining a black-list
to filter out news and ads. Also, we exclude user accounts with
high word and sentence repetition. We plan to integrate more
elaborated techniques in the future [21, 17].

e Besides content, certain spatio-temporal patterns relate to bots.
We assume that human users tweet at maximum with an average
daily frequency of two messages per hour. Higher frequencies
(>48 tweets a day) usually indicate bots (~3-5%). Also, even
fast passenger aircrafts no dot exceed a speed of 1,500 km/h. If
the derived movement speed of subsequent tweets exceeds this
threshold multiple times, we exclude the corresponding user,
because it is presumably a bot.

Movement Classification Often, there are days between two
consecutive messages of a user and it is unknown where the user
has been in between or if she has arrived much earlier at the second
location than the message was sent. Thus, classification of the used
means of transportation is a non-trivial problem. To infer the most
likely means, we apply different categorization rules (see Figure 3).



We split the data into three main categories (pedestrian, ground trans-
portation, flight), since the data sparsity and resulting uncertainty is
too high for a finer-grained classification. Still, it is challenging to de-
fine a clear boundary among different transportation categories. We
apply a set of heuristics. Humans typically tend to walk at about
5 km/h [15], up to 9 km/h [34]. Similarly, for ground transportation
we set the threshold to 300 km and above 5 km, the upper pedestrian
walking distance. A fast passenger aircraft does not exceed a speed
of 1,500 km/h and the maximum distance of a flight cannot exceed
20,000 km, as this is half the circumference of the earth and not possi-
ble without refuel. With these assumptions, additional data is further
filtered out. However, depending on the region and timespan to be
analyzed, this can lead to a small data sample that is susceptible to
outliers. Hence, we provide interactive means to widen those strict
filter settings and let the analyst choose a trade-off between precision
(more reliable categorization) and recall (higher data volumes).

4.2 Raw Data Visualization

A straight-forward way to visualize the reconstructed movements
(S2) would be to simply draw trajectories on the map. Unfortunately,
this results in clutter and overplotting (see Figure 4, left).

A more scalable approach to visualize the movements is alpha
blending (center). By decreasing the opacity of the trajectories, vi-
sual clutter can be reduced and trajectories with high density are
clearly conveyed. However, alpha blending introduces a new prob-
lems. Firstly, the quantity of trajectories to be drawn largely de-
pends on the selected area and timespan. Users need to adjust the
opacity when drawing trajectories under different circumstances to
avoid overplotting in dense areas. This issue may reduce efficiency
of users’ visual exploration. Secondly, encoding flexibility is limited.
Alpha blending results in a linear density mapping. Hence, it is of-
ten not possible to perceive both, small and large density differences
within a single visualization.

Figure 4: Drawing of large movement data. From left: full opacity,
alpha-blending, edge splatting with normalization and color mapping.

To overcome these problems, we further support edge splatting
(see Figure 4, right) [16]. Similar to Scheepens et al. [39], we trans-
form the trajectories to a density distribution of pixels in a 2D matrix
with the same pixel size and ratio as in the current viewport. More
specifically, we iterate all trajectories and determine the intersecting
pixels. Each pixel finally holds an amount of intersecting trajectories
and we can easily obtain the minimum and maximum density in the
distribution. We finally map the density of each pixel to color. We
apply a non-linear mapping to approximate perceptual linearity [31]
and to reduce sensitivity to outliers. Figure 9 shows edge splatting re-
sults for two large datasets. The calculated density values are mapped
to different color schemes ranging from white (low density) to red or
blue (high density).

4.3 Hierarchical Graph Model

For the exploration of movement volumes, edge splatting is an ade-
quate technique. In addition to this, we also developed a graph-based
method that especially addresses the data specifics of Twitter data
(S2, S3). Firstly, the exact path between two geo-located messages is
unknown. The more time is spent between two locations, the less cer-
tain it is that the user took a straight path (and uniform speed) to reach

Figure 5: The hierarchical graph model and weight-based link prop-
agation. Original links in brown (leaf level) are propagated to upper
levels (red, yellow), allowing for more abstract/aggregated views.

the destination. With edge splatting, however, the direct path between
two consecutive positions is visualized. Secondly, microblog data
volumes vary strongly, depending on timespan and selected region.
Peaks in popular locations skew the data distribution and the large
number of trajectories from or to these peaks can occlude underlying
patterns. While edge splatting mitigates such clutter and occlusion,
it is still difficult to understand traffic flows, especially when many
trajectories with different angles are displayed.

Aggregation of movement data can help to overcome the afore-
mentioned issues and is often achieved by graph computation. Most
graphs, however, have the drawback of a fixed, pre-computed level of
aggregation. Our approach, on contrast, creates a hierarchical graph
structure that allows for a stepwise data aggregation and abstraction
from detail to overview. It hierarchically subdivides the geographic
regions based on their data volumes. For this recursive subdivision,
different structures could be applied. While political boundaries (e.g.,
countries, states) are a common way to bin geographic data, our cur-
rent implementation relies on an adaptive rectangular grid (quadtree).
The advantage of our method is that it bins the data depending on
the natural distribution rather than creating hard cuttings on political
borders. However, as country-based statistics are often of interest, we
also want to support other shapes in the future.

To create the grid, we use all locations of Twitter messages for the
selected region and time. The reason why we do not only use the
movement points is that all messages better reflect the Twitter popu-
lation and we reduce sparsity problems in regions with low message
density. At first, the analyst defines a cut threshold. This means that
each cell is split when the cut value is exceeded, leading to large cells
in areas with low population and to a finer grid structure (smaller
cells) in densely populated regions (see Figure 5, left). Depending on
the underlying data and task, one can create flat or deep hierarchies
with stronger or weaker aggregation per cell. Next, the movement
data is used to compute directed links between the grid cells on leaf
level. Each link holds the number of movements between two cells as
weight. For example, a link from London to Paris can have a weight
of a few hundred movements for a single day. Figure 5 illustrates the
spatial properties of the grid on the left and its data structure on the
right side. The original links on leaf level are shown in brown. Hav-
ing a cutting threshold of one leads to the highest detail, because each
data point is represented as a single cell on the leaf level. By contrast,
looking at a higher level of the hierarchy provides more overview.

To achieve a smooth transition from detail to overview, we apply a
link propagation algorithm that sums up the links weights to a higher
tree level. Once calculated, the tree holds information for all lev-
els and does not need to be computed again. The algorithm starts
to propagate the links from the leaves to the first (red) aggregation
level, while links disappear that point to direct siblings, and others
get stronger because their weight sums up. Likewise, links for the
next aggregation level are illustrated in yellow. Depending on the se-
lected level, the respective nodes and their links are visualized in the
map. Figure 5 illustrates the red link level. This also includes leaves
with links that are shallower then the current selected level. Note that
the illustration uses only a few links, while the quadtree can be large,
holding thousands of nodes and links that have different directions.
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Figure 6: The grid structure is colored according to incoming or outgo-
ing movement. Arrows indicate average movement direction. Standard
deviation is encoded with varying opacity. A tooltip shows additional in-
formation and highlights the movements for the underlying cell.

Figure 10 shows results for mircoblog data in the USA and eastern
Asia. Grid cells represent the nodes of the graph. They are colored
according to the number of incoming or outgoing link weights, which
leads to a grid-based heatmap encoding aggregated movement vol-
umes. To take the spatial area of each cell into account, we normalize
the number of links with respect to the cell size.

Besides drawing links, the gridded heatmaps can also be overlayed
with arrows that indicate movement direction by showing the average
angles of outgoing or incoming links, respectively, one per cell (see
Figure 6). Increasing standard deviation of movement directions is
encoded by increasing arrow transparency. While the link-based vi-
sualization shows main connections, the arrows have other benefits:
they are free of clutter and reduce misinterpretation of routes traveled
caused by sparse data resolution.

4.4 Movement Comparison

With the techniques used to construct and visualize raw movements
as well as aggregated ones, we can compare patterns on different lev-
els of detail (S4). The statistics of the datasets loaded appear in the
comparison interface to the right of the map view (see Figure 1). To
help the analyst to distinguish between both datasets, the first dataset
loaded is colored in red, the second one in blue.

The comparison of movement data is challenging. When compar-
ing different datasets (e.g., Twitter and flight schedule data or Twitter
data for different time periods), we need to normalize the data first.
Directly comparing the datasets would lead to severe bias, because
their density may not be in the same level of magnitude. We use a
min—-max normalization to transform the data into the range [0.0, 1.0].
Compared to the flight schedule and taxi route data, the spatial distri-
bution of the movements extracted from Twitter can have large peaks,
that would dominate the normalization and may lead to undesirable
and incommensurable results. Often, the rest of the data distribution
is hardly visible. To overcome this issue, we apply a cube root func-
tion that preserves differences in lower density range while it com-
presses the peaks to an acceptable level. Also, we allow analysts to
further control the normalization.

A histogram first gives an overview on the data’s density distribu-
tion. Depending on the visualization in use, it shows the movement
distribution in the edge splatting matrix or of link weights in the hier-
archical graph structure. The analyst can then interactively shift the
maxima densities to a lower range (see Figure 7). All values to the
right of the marker will be downgraded to the value at the position of
the marker (new maximum). Thus, a highly unbalanced distribution
will be transformed to be more flat, and users become aware of the
transformation. Together, all adjustments lead to the following equa-
tion with x’ for the pixel value in case of splatting/link value for the
graph and Xy, for the adjusted maximum.

X X ))ﬁ*(l—a)

X =a+ <min(l7

Xmax,q — Xmin

2 s ] k

Figure 7: The density distribution (1) of one week Twitter data in Man-
hattan (see Section 5.2) is dominated by large peaks that can be com-
pressed interactively (2) shifting the maximum to a lower value. Be-
sides the histogram, overall movement count, mean u, and standard
deviation o per pixel give further information about the distribution.

a (presetting: 0.05) is a threshold that preserves visibility for areas
with low density) and 3 (0.33) introduces non-linearity [31] that con-
trols the degree of data smoothing.

After the normalization, users can run a comparison analysis using
either edge splatting (detail level) or gridded heatmaps (with either
links or arrow glyphs), which rely on the hierarchical graph struc-
ture. In edge splatting mode, we simply subtract the value in each
pixel of one image from the other image. Thus, the pixel value in the
subtracted image is in the range [—1.0, 1.0]. The example in Fig-
ure 9 shows edge splatting results for two datasets and their compar-
ison. For the graph-based comparison, we also apply a subtraction.
A precondition is that both graphs have the same layout, i.e., same
quadtree structure with same depth and same number of nodes, oth-
erwise the comparison will fail to find the right links to compare. We
employ an auto-filling strategy to obtain the same hierarchical grid
structure for different datasets: users first load a dataset and create a
grid. The resulting heatmap can be seen in Figure 8, left. When a
second dataset is loaded for comparison, the same hierarchical grid
structure is constructed but filled with the movement data from the
second dataset.

Afterwards, the comparison of the two hierarchical graphs is per-
formed by subtracting their link weights (Figure 8, right). E.g., a
value of 0.5 subtracted with 0.8 leads to a slightly negative value of
—0.3. Links that only exist in one of the datasets result unaltered
(e.g., 0.0 —0.8 = —0.8). Lastly, we apply a divergent color scheme
using colors, ranging from blue over white (similar) to red.

|

Figure 8: For the first dataset loaded (here, taxis in New York) a grid
structure is created (left). The same grid is filled with the second
dataset (Twitter data, center). The subtraction is shown on the right.

5 CASE STUDIES

We test the applicability of our approach in three case studies. First,
we investigate differences in movement data derived from Twitter for
different time periods by analyzing the pilgrimage to Mecca. For
an exemplary evaluation of the extracted microblog movements, we
compare them to other data that is explicitly collected to gain insights
in human movement. On a global scale, we investigate similarities
and differences to flight schedule data and on a local level, to taxi
data, which reflects daily commute patterns.



Figure 9: The taxi dataset (left) shows different peeks at New York’s airports (2,3,4) and in the inner city (1). Twitter data (center) has higher peeks
and is not that smoothly distributed, but also gives information about movement in the north-west areas (6). The right image shows differences (red,
blue) and some similarities (white), for example, the routes to and from Newark airport (cf. 4,7).

5.1 Pilgrimage to Mecca

We are interested if the movement data reflects larger events and sea-
sonal changes. In this case study we compare different time peri-
ods of trajectories derived from microblog data in the area of Mecca,
Saudi Arabia. Mecca is the central pilgrimage destination for Islam.
During the Hajj (the pilgrimage) more than two million people travel
to Mecca to circumambulate Kabaa. In September 2015 more than
700 of them died in a mass panic [1] near the Jamaraat bridge. We
want to investigate if we can identify changes in movement volumes
and directions derived from Twitter that could help to gain insights
and eventually make the journey more secure. We first load the data
for the 2015 Hajj and slightly extend the timeframe from 18th to 26th
(the day the case study was carried out), to also cover arrivings and
departures. Next, we filter for pedestrians only which reduces the
dataset of 3,253 movements drastically to 194 movements. Hence,
we accept to loose precision to increase recall and widen the filter
restrictions (see Section 4.1). This leads to an amount of 793 move-
ments for the selected area and time period. We have a first look us-
ing alpha blending and edge splatting. However, the data is not dense
enough to produce a smoothly distributed image and we choose to
make use of the hierarchical aggregation means (see Section 4.3) to
reduce clutter from diverse movement directions. After interactively
choosing a suitable level of detail using the hierarchy slider the grid-
based heatmap shows clear patterns that are highlighted in Figure 1.
Label (a) shows a peak at Kabaa, the cuboid building at the center of
Masjid al-Haram, the sacred mosque. Label (b) points at the area of
Muzdalifah, another stop of the pilgrimage, just like (d), which high-
lights the area around Mount Arafat. Arrows encode average travel
directions. One can see that many arrows point from Muzdalifah to
(c) Jamaraat Brige, a large pedestrian bridge build to carry hundred
thousands of pilgrims. In this area the catastrophe happened between
the 23th and 24th of September. This is also indicated by the temporal
peek at the timeline (e). To compare this extraordinary situation to an
average time period, we load Twitter data from August, as a second
dataset. We apply the same grid structure to this dataset, making it
comparable to the Hajj data. While the August dataset shows a peek
around Kabaa only, the Hajj data clearly has its density peaks also at
the pilgrimage places (see Figure 1, white box).

5.2 Taxi Traffic in New York

Transportation data derived from public buses, taxis [24, 47], and
bike sharing systems [48] is often used to better understand urban
mobility patterns. To determine if microblog data could be used in-
stead, we compare one week of Twitter movements in New York with
one week of taxi data. In New York, Twitter volumes are extremely
dense and we also can choose from different traffic data sets that are
available for the public. The dataset we use here is from the NYC
Taxi & Limousine Commission and was recorded in June 2015. We
chose a 5% sample of the first week in June, leading to 140,000 taxi
trips. From Twitter we load data of the same timeframe and spatial
area, leading to 50,000 trajectories.

In Figure 9 one can see the individual edge splattings for both
datasets and their diversity splat. The visualization on the left shows
the taxi dataset that has certain peaks (red) at the airports Newark (4),

John E. Kennedy (3), and La Guardia (2) that surround the New York
area. The derived statistics (Ut = 27.1, o = 73.6) align with the visual
impression: in the center of Manhattan many taxis are in use while
in more remote areas the density of the data is mostly low, leading
to a high standard deviation. This area locates main attractions and
businesses. The movements derived from Twitter (center) share some
of these peaks. One can, however, see that the color transitions are
not as smooth as in the left image. We hypothesize that this is be-
cause most microblog movements show tourist routes to main attrac-
tions such as the Empire State Building and the City Hall (5). The
JFK (8) and the Newark (7) airports also stand out. Compared to
the taxi dataset, the number of Twitter movements is less but they
also cover the north-west area. This leads to a lower mean and stan-
dard deviation (4 = 11.18, 0 = 24.47). In the comparison view, we
subtracted both edge splatting images with a min—max normalization
and applied a cubic power function (see Section 4.4). The result is
shown in the right image. The aforementioned peaks clearly stand
out. The routes to the Newark airport are quite similar, as is the area
around JFK. While the taxi data is most dense in the inner city, we
only retrieve movement information for the western regions from the
tweets. A negative mean of —0.14 indicates that Twitter is slightly
more prominent regarding the whole area.

5.3 Global Flight Schedules

Flight schedule data is often used to investigate global mobility
patterns. We are interested how movements extracted from Twit-
ter conform to real world transportation on a global level. For
this study we use flight schedule data from the OpenFlight project
(http://openflights.org/) that was collected in August 2014 and in-
cludes 8,107 airports and 67,663 air routes. For each of the 11,452
routes, the data contains origin and destination. The connectivity of
this dataset is very strong as many airports allow flying to many des-
tinations. To reduce clutter, we choose our hierarchical aggregation
approach. We create an adaptive grid structure (shown in Figure 4.3)
to aggregate the flight into a hierarchical graph. This graph is vi-
sualized with the grid-based heatmaps, presented in Section 4.3. The
upper left image of Figure 10 shows results for the USA for a selected
aggregation depth. The level of aggregation can be changed with a
slider. Movement strength is encoded by the width of the links con-
necting different cells. Cell color encodes the accumulated weight of
outgoing links. As the second dataset we sample one month Twit-
ter data from the USA, also collected in August 2014. We apply the
same grid structure (see Section 4.3) to get a comparable graph for
the Twitter movements and filter the outcome to flights only, lead-
ing to 2,003 movements (Figure 10, upper right). One can see that
visually similar connected links and movement volumes (relatively
similar width), exist in both results (flights and tweets). Large air-
ports around Los Angeles (1) and New York (3) are slightly busier
in the Twitter data (upper right), as indicated by the width of the
links of each corresponding grid cell. In addition, the color of each
cell is also comparable for both datasets, indicating the relative num-
ber of scheduled flight departures and outgoing Twitter movements
is equivalent in most areas. However, around the area of Atlanta (2)
the connectivity to other areas is stronger and the relative number
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Figure 10: The upper two images show two graphs on the same hier-
archy level: flight data (left) and Twitter data (right). Flight data is more
prominent around Atlanta (2), Twitter data in California and New York
(1, 3). The lower images show that flight data is being more prominent
in the Chinese area (4). Twitter data has its peaks in Indonesia and
Japan (5, 6). The left image shows connection differences while the
right heatmap highlights different volumes of outgoing movement.

of flights is higher as in the microblog data (Atlanta airport is the
world’s busiest airport). We also apply our comparison to eastern
Asia. The lower images encode both datasets in a single view using
a divergent color scheme for differences of outgoing links (left) and
cells (gridded heatmap, right). For the aggregation level shown in the
image, each cell contains on average 13.2 outgoing movements for
the flight data and 3.1 for the Twitter data. The flight schedule data is
more prominent in China (4), were Twitter is less popular (more peo-
ple use Sina Weibo). Clear peaks in the Twitter data become visible
in Indonesia, Malaysia (5), and Japan (6). Hovering over Malaysia
highlights 10% of all flight related movements in the Twitter data,
while in the flight schedule data, the relative amount is significantly
lower (2%). Overall, this case study shows a high similarity for flight
connections in the USA. In Asia similar connections could also be
identified, but their travel volumes show significant differences.

6 DIscUsSION

The exploration and comparison of movements derived from social
media is both, challenging and promising. Besides the three cases
presented, we investigated other events and seasonal changes. For
example, we visualized significant movement differences around the
Mediterranean sea in the holiday season. Main events like exhibi-
tions and conventions (ComicCon, CeBIT) show a clear difference in
movement patterns of the surrounding area compared to other times-
pans. The same applies to sports events. To investigate movement
volumes, directions, and origins could be especially interesting for
event planning and marketing, but also for security purposes.

However, extraction and analysis of movement data from mi-
croblogs cover many challenges that we only partly address with
our contributed techniques. One challenge that we identified is that
movements derived from Twitter can be very unstructured in their
directions. Because of their low resolution, they do not naturally fol-
low any road network. While edge splatting nicely shows point-based
movement distribution and allows for a visual comparison by image-
based substraction, it does not completely preserve angle informa-
tion. This makes it especially difficult to see movement directions in
areas where movement is diverse. Our proposed aggregation partly
addresses this problem. We show a heatmap of different granular-
ity. Based on an adaptive grid it visualizes the amount of movement
volumes at their origins or destinations. We indicate main directions
with arrow glyphs or spatially aggregate movement to links. One
drawback of aggregation in general is information loss.

Another difficulty lies in the sparsity of the data (low resolution
of trajectory points) and resulting uncertainty. The derived move-

ments contain origin and destination, but the precise route taken is
unknown. Our aggregated visualization helps to correctly interpret
the data by hiding individual trajectories. While a precision&recall
slider improves the awareness of uncertainty, the visualizations do
not yet take uncertainty into account. For example, one could handle
more uncertain movement (e.g., long timespans between two mes-
sages) as less important and reduce its influence.

Lastly, highly varying data volumes in time and space and uneven
data distribution with high peaks, for example, at famous places, are
challenging. Varying volumes get even more present when compar-
ing to other data sources. How is air travel comparable to a spatio-
temporal sequence of geo-located text messages? A difficult question
to answer because many details are unknown such as the number of
people in the plane. Normalization can solve some of these problems.
We apply a global (regarding the data loaded) min—-max normaliza-
tion to make data sources comparable in scale. We handle uneven dis-
tribution with interactive data smoothing (i.e., cubic root functions)
that increases values in areas with lower densities and downgrades
high peaks. We could not completely solve the problem of locally
varying data volumes, e.g., by country. In our system, an analyst
would simply narrow down the area of interest to a more local level
and only load the data in this region to get a more local comparison.
Another solution would be to apply a local normalization function,
e.g., based on Twitter or population density in the neighborhood (cf.
[6]). As a drawback, global differences may not be visible anymore.

Overall, we think the contributed techniques are a first main step
towards a better understanding, and especially an enabler for com-
parison of movement data derived from microblogs.

7 CONCLUSION AND FUTURE WORK

We presented a system that embeds techniques for the exploration
and comparison of movements derived from Twitter. In three case
studies we showed the applicability of our approach for a seasonal
comparison and a comparison to other global and local datasets.

In the future, we want to extend the adaptive rectuangular grid
to other shapes, e.g., to Voronoi cells or political boundaries, which
take the underlying geographical structures into account. Link ag-
gregation can be further supported with hierarchical edge bundling
that also integrates link weights and direction [41]. A main task we
identified is to compare data regarding temporal changes. We aim
for a semi-automatic event and seasonal change detection. Detected
changes could be encoded in a timeline to provide overview. While
we focused on the exploration and comparison of historical data, our
approach could also be applied to streaming data [14]. Lastly, we
plan to connect the textual content to the movement patterns found.

While it is still questionable when movement data derived from
microblog services can help in crisis situations, also other domains
such as urban planning, event management, and security could benefit
from additional perspectives and insights, especially in cases where
no other data is available. We plan to carry out different expert studies
to get input from these domains in the near future.
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