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Abstract Visual analytics employs interactive visualizations to integrate users’ knowledge and inference capability into
numerical/algorithmic data analysis processes. It is an active research field that has applications in many sectors, such
as security, finance, and business. The growing popularity of visual analytics in recent years creates the need for a broad
survey that reviews and assesses the recent developments in the field. This report reviews and classifies recent work into a
set of application categories including space and time, multivariate, text, graph and network, and other applications. More
importantly, this report presents analytics space, inspired by design space, which relates each application category to the
key steps in visual analytics, including visual mapping, model-based analysis, and user interactions. We explore and discuss
the analytics space to add the current understanding and better understand research trends in the field.
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1 Introduction

Recent advances in computing and storage technolo-
gies have made it possible to create, collect, and store
huge volumes of data in a variety of data formats, lan-
guages, and cultures[1]. Effective analysis of the data to
derive valuable insights enables analysts to design suc-
cessful strategies and make informed decisions. Various
numerical/algorithmic approaches such as data mining
and machine learning methods have been used to auto-
matically analyze the data. Although these approaches
have proven their usefulness in many practical applica-
tions, they still face significant challenges such as algo-
rithm scalability, increasing data dimensions, and data
heterogeneity. Furthermore, these methods may not be
perfect under all analysis scenarios. Users often have
to provide their knowledge to iteratively refine the met-
hods. If complex, interesting patterns are discovered,
it is usually difficult to understand and interpret the
findings in an intuitive and meaningful manner[2].

To address these challenges, visual analytics has
been developed in recent years through a proper com-
bination of automated analysis with interactive visua-
lizations. The emergence of visual analytics can be
largely attributed to the strong need of homeland se-
curity of the United States to analyze complex data,
such as incomplete, inconsistent, or potentially decep-
tive information, since the September 11, 2001 terrorist
attacks[3]. The analysis requires that humans should
become involved to evaluate the data to respond in a
timely manner.

Thomas and Cook presented the first widely-
accepted roadmap for visual analytics to meet the prac-
tical requirement in their seminal book[3]. In the book,
visual analytics is defined as “The science of analyti-
cal reasoning assisted by interactive visual interfaces”.
Later, the VisMaster Coordinated Action community,
funded by the European Union, updated the roadmap
and provided a more specific definition of visual analy-
tics: “Visual analytics combines automated analysis
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with interactive visualizations for effective understand-
ing, reasoning and decision making on the basis of a
very large and complex dataset”[2].

These pioneering researches[2-3] define the scope of
the field and discuss future research challenges that the
field will face. Subsequently, a large number of visual
analysis techniques have been developed. The rapid
technical developments in the field have greatly pro-
moted the use of visual analysis techniques in different
domains to solve real-world problems, such as network
traffic analysis[4], engaging education[5-6], concepts[5],
sport analysis[7], database analysis[8], and biological
data analysis[9-11]. As a result, visual analytics has
been gaining more and more attention from both in-
dustry and academia. With the growing popularity of
visual analytics, there is an increasing need for a com-
prehensive survey covering the recent advances of the
field.

Our motivations in conducting this survey are
twofold. First, we aim to review the most recent deve-
lopments of visual analysis techniques and applications
and provide a concise but broad review of the field. To
the best of our knowledge, the surveys of visual analy-
tics published in the last few years mainly focus on some
narrow topics of visual analytics, such as visual analysis
of time-oriented data[12], spatio-temporal data[13], or
network data[14]. A comprehensive survey that reviews
the current research of visual analytics is still absent.

Second, this survey aims to organize, classify, and
compare recent research to provide a critical assessment
of the research and understand current research trends.
We introduce analytics space to organize and classify
the current visual analytics research in a novel way
using key VA (Visual Analytics) steps and application
categories. As visual analytics is an application-driven
research field[3], we classify the papers into different ap-
plication categories: space and time, multivariate, text,
graph and network, and other applications. The key VA
steps refer to the key steps in the classic visual ana-
lytics process[2] including visual mapping, model-based
analysis, and user interactions which have been com-
monly accepted in the field. We analyze the analytics
space to discuss and explore the research trends.

The contributions of this paper are as follows. First,
the paper presents a comprehensive survey of recent
developments of visual analytics research. Second, it
provides a novel classification of the results and iden-
tifies new research trends, which can help enhance the
understanding of the field.

The structure of the paper is as follows. In Section 2,
we introduce recent models and theories of visual ana-
lytics. Section 3 discusses the paper classification and
analyzes the research trends. In Sections 4, 5, 6, and

7, we review current researches in different application
categories. Finally, Section 8 concludes the paper and
outlines future challenges in this research domain.

2 Theories, Models, and Frameworks

Visual analytics focuses on analytical reasoning
using interactive visualizations. Shneiderman et
al.[15] proposed a famous information seeking mantra:
“Overview first, zoom/filter, details on demand” to
facilitate visual data exploration. Keim et al.[1] in-
dicated that only displaying the data using a visual
metaphor rarely provides any insight. They extended
the mantra[15] for visual analysis to gain profound in-
sights: “Analyze first, show the important, zoom/filter,
analyze further, details on demands”. Compared with
the information visualization mantra[15], the visual ana-
lysis mantra[1] highlights the combination of nume-
rical/algorithmic data analysis and interactive visual
interfaces.

Keim et al.[2] also introduced a seminal framework
to depict the visual analytics process. Fig.1 illustrates
the entire visual analysis process. The process starts by
transforming the data (such as filtering and sampling)
for further exploration. After that, a visual or an auto-
matic analysis method is adopted separately. When au-
tomatic analysis methods are applied, approaches such
as data mining methods are used to estimate models for
characterizing the data. When visual data exploration
is used, users directly interact with the visual interface
to analyze and explore the data.

Fig.1. Visual analytics process by Keim et al.[2]

The combination and interaction between visual and
automatic analysis methods are the key feature of visual
analytics, which helps distinguish the visual analytics
process from other data analysis processes. It allows
for progressive refinement and evaluation of the ana-
lysis results. For instance, patterns discovered by the
visual method can help refine the automatic analysis



854 J. Comput. Sci. & Technol., Sept. 2013, Vol.28, No.5

model. Thus, visual data exploration together with au-
tomatic model-based analysis can often lead to better
analysis results.

Recently, researchers have introduced different
means to enhance the classic information visualization
process[16]. Bertini et al.[17] proposed overlaying
the Quality-Metrics-Driven Automation on the classic
pipeline[16]. The quality metrics can be integrated into
different steps of the pipeline to automate the numer-
ical/algorithmic data analysis and better support vi-
sual analysis and exploration. In addition, Crouser et
al.[18] emphasized the importance of human-computer
collaboration in the visual analytics process. Simoff et
al.[19] suggested the importance of user interactions in
the visual analysis process.

Some other new models and guidelines for visual
analytics have also emerged in recent years, greatly
boosting the advancement of the field[20-26]. Munzner
et al.[27] divided the visual analysis design into four lay-
ers: domain problem characterization, data/operation
abstraction design, encoding/interaction technique de-
sign, and algorithm design. Sedlmair et al.[28] intro-
duced a methodology with nine stages (learn, winnow,
cast, discover, design, implement, deploy, reflect, and
write) for conducting an effective design study. Lam et
al.[29] reviewed a large number of visualization publi-
cations and derived seven evaluation scenarios in visual
analytics, thus providing a useful guidance for designing
an effective evaluation procedure. An interaction model
called semantic interaction [30] has been introduced re-
cently. It allows users to interact with high-dimensional
data in a two-dimensional (2D) view, in which the dis-
tances between data items in the view represent the
similarity between the items.

A few visual analysis frameworks have also been in-
troduced to facilitate the development of visual ana-
lytics systems. Data-Driven Documents (D3)[31] is a
representation-transparent framework for rapid deve-

lopment of online data visualizations. It allows for di-
rect manipulation and modification of any document el-
ements and enables smooth animation and user intera-
ctions. WebCharts[32] is a new visualization platform
that enables an application to host Javascript code. It
allows for easy reuse of existing code and fast system
deployment.

3 Analytics Space

In this section, we organize the papers from a
novel perspective, which considers the application cate-
gories and the key steps of the visual analytics pro-
cess. The key steps include data transformation, visual
mapping/layout, model-based analysis, and user intera-
ctions according to the widely-accepted visual analy-
tics model[2]. These key steps form the foundation
of effective visual analytics systems. We do not con-
sider data transformation in our classification since it
is straightforward and commonly-used. We also care-
fully examined the sections of papers from the premier
conferences of visual analytics such as IEEE InfoVis and
IEEE VAST. Five categories of applications have been
identified: space and time, multivariate, text, graph and
network, and other applications. The categories not
only provide a broad overview of visual analytics appli-
cations, but also differentiate recent research.

We have come up with analytics space, inspired by
design space, to better understand the relationships be-
tween these key steps and different application cate-
gories. It relates each application category to specific
visual analytics steps. Fig.2 illustrates the analytics
space using a heatmap. Each row of the figure rep-
resents a key step of the visual analytics process and
each column stands for an application category. Each
cell contains one or more surveyed papers. A paper in a
certain cell means that the work belongs to an applica-
tion category and the techniques used can be classified
into a particular key step. We also use color to visually

Fig.2. Analytics space for different applications in the visual analytics process.
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encode the number of papers. The darker a cell, the
more papers it contains.

Fig.2 clearly indicates the imbalanced distribution of
recent research in different key steps across different ap-
plications. Obviously, the second row of the figure, rep-
resenting model-based analysis, looks lighter than the
other rows. That is recent research mainly improves
the visual mappings/layouts of existing algorithms and
designs intuitive user interactions to solve real-world
analysis problems. It is possible that the traditional in-
formation visualization research still plays an important
role in the field of visual analytics. In the future, the re-
search of visual analytics needs to be conducted towards
a seamless integration of interactive visualizations and
model-based analysis.

Fig.2 also reveals that the second and third columns
of the figure look overall darker than the other columns.
That is the research in the text and multivariate cat-
egories exhibits a more balanced structure of the vi-
sual analytics process. We speculate that text data is
more complex, unstructured free text, which is difficult
to analyze directly. Mining algorithms are needed to
transform the unstructured data to structured informa-
tion to facilitate the analysis. The multivariate data is
often high dimensional. Without model-based analysis
such as dimension reduction techniques, it would be al-
most impossible to derive any insight. In contrast, the
papers in the categories of space & time and graph still
mostly focus on visual mappings and user interactions.
One possible reason is that the data used by space &
time and graph is usually structured data. Thus, the
techniques without model-based analysis suffice for the
applications.

4 Space and Time

With advances in technologies, geospatial, tempo-
ral, and spatio-temporal data have been one of the
most prominent and ubiquitous data types in visual
analytics[121]. Finding spatial and temporal relation-
ships and patterns in the data is needed in many ana-
lysis tasks[2]. However, the scalability and complexity
of the data pose significant challenges for effective ana-
lysis, which requires both advanced computational and
visualization techniques.

4.1 Analysis of Geospatial Data

Visual analytics often plays a key role in analysis
of geospatial data[36]. Recent research has brought
some new developments in this field[34,51,55]. Slingsby
et al.[51] presented an interactive visual analysis system
to explore and examine the results of OAC — a geode-
mographic classifier. The work uses OAC to classify the
UK population with 41 demographic variables into a set

of geographical areas that are organized in a three-level
hierarchy. A set of coordinated views such as dot maps,
barcharts, treemaps, and parallel coordinates plots are
employed to visually analyze the OAC categories with
uncertainty information. The treemaps used with spa-
tial ordering[56] relate the node positions in the treemap
to the corresponding real geographic regions.

BallotMaps[55] is an interesting interactive graphics
tool based on hierarchically organized charts to facili-
tate analysis of spatial and non-spatial data. The tool
was used to study the relationship between the num-
ber of votes received by a candidate and the position
of his name on the ballot paper, and examine the as-
sociated geographical patterns. Some interesting pat-
terns related to the 2010 local government elections in
the Greater London area were discovered using the tool
(see Fig.3). However, the method does not consider the
voting bias patterns for different parties over time.

Fig.3. BallotMap of 2010 local government elections in the

Greater London area[55].

4.2 Analysis of Temporal Data

Visual analytics of temporal data has attracted in-
creasing interest in many analysis tasks and has been
widely used in a variety of applications such as ana-
lysis of environmental time series[50]. This subsection
reviews only recent research. For other related work,
interested readers can refer to a book on visualization
of time-oriented data[12].

CloudLines[44] uses a new compact visual
metaphor to visualize time series in limited space.
ChronoLenses[57] provides different types of lenses to
explore regions of interest in time series data. Users are
allowed to interact with the lenses to build analytical
pipelines to facilitate exploratory analysis.

High-dimensional time series data, such as multiva-
riate financial and economic data, is commonly found
in our daily lives but is challenging for analysis.
TimeSeer[39] is a useful visualization tool for explor-
ing the high-dimensional time series data. The tool
employs a set of measures, such as density, skewness,
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and outliers, called scagnostics to capture the charac-
teristics of the data. TimeSeer displays the estimated
scagnostics using a scatterplot matrix, line charts, and
a set of small multiples (see Fig.4). It supports various
interactions such as filtering, brushing, and drill-down.

Fig.4. Visualization of a series of US Employment data using

TimeSeer[39].

RankExplorer[49] is a novel visual analysis technique
that combines ThemeRiver[122], color bars, and glyphs
to explore ranking changes in large time series data.
RankExplorer first segments the time series data into
different segments. A ThemeRiver layout is used to
visualize the temporal variation of each segment and
the total variation of all the segments. Color bars and
glyphs are embedded in the ThemeRiver layout to dis-
play inner ranking changes inside a segment and outer
ranking changes between segments, respectively. The
tool was used to analyze the ranking changes of tempo-
ral search queries (see Fig.5).

Fig.5. Visualization of the top 2000 Bing search queries using

RankExplorer[49].

4.3 Analysis of Spatio-Temporal Data

Spatio-temporal visual analytics has attracted a
great deal of attention. Spatio-temporal data refers to
the data with both spatial and temporal information.
Various methods have been used to solve real-world
problems[37,43,46,58]. Nevertheless, visual analytics of
spatio-temporal data remains difficult.

Trajectory visualization is a very important appli-
cation of spatio-temporal visual analytics. Tominski et

al.[52] proposed visualizing trajectories using a hybrid
2D/3D display. This display stacks 2D trajectory bands
on top of a 2D map in 3D space, such that trajectories
can be displayed in their spatial context, as shown in
Fig.6. Density-based methods with kernel density es-
timation techniques[33,35,47-48] are used for visualizing
a large number of trajectories on a map. Scheepens
et al.[47] proposed using composite density maps for
multivariate trajectories. Their approach uses a flexible
architecture with six different operators to create, com-
pose, and enhance density fields. Fig.7 shows a com-
posite density map displaying multivariate trajectories
of different vessel types in front of Rotterdam harbor.

Fig.6. Stacking-based visualization of trajectories in 3D space[52].

Fig.7. Composite density maps of vessels[47].

Many applications can benefit from interactive
spatio-temporal visual analytics. Maciejewski et al.[45]
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presented a visual analytics approach to forecast
hotspots, namely, unusual spatio-temporal regions.
BirdVis[40] is a typical interactive spatio-temporal
visualization system with coordinated views to under-
stand bird populations.

4.4 Summary

The recent developments in spatial, temporal, and
spatio-temporal visual analysis approaches indicate
that this research area is growing rapidly. Nevertheless,
there are still quite a few research challenges that must
be addressed. One challenge is to effectively visualize
realtime streaming data with a large number of time se-
ries. Additionally, effective modeling, characterization,
and visualization of the uncertainty information arising
from spatial-temporal data collection and transforma-
tion must also be investigated.

5 Multivariate Data

Visual analytics of multivariate data is an active
research area. Numerous methods are used to ex-
plore and understand the distributions and correlations
among different data dimensions[62,67,69,119,123]. These
approaches can be generally classified into two broad
categories: projection-based methods based on dimen-
sion reduction techniques and visual methods based on
visual layouts.

5.1 Projection-Based Methods

Projection-based techniques (or dimension reduc-
tion) find “interesting” projections of high-dimensional
data in low-dimensional space[123]. The techniques
transform high-dimensional data to low-dimensional
data while preserving some important features of the
original data. Dimension reduction can help avoid the
effects of “the curse of dimensionality”[124] for subse-
quent data analysis.

Multidimensional scaling (MDS) is widely used in
this area to reduce data dimensionality. Traditional
MDS uses the Euclidean distance to compute data simi-
larity. Lee et al.[64] argued that the Euclidean distance
cannot characterize the inter-cluster distances, thus re-
sulting in poor data projections. They introduced a
structure-based distance metric to overcome this prob-
lem in high-dimensional space to produce good pro-
jections. This method was used to explore a variety
of multidimensional datasets, such as aerosol particles
data and operating system data.

Heterogeneous relationships among the dimensions
in high-dimensional data space are ignored in most ana-
lysis methods. Turkay et al.[69] proposed using rep-
resentative factors to capture the grouping relation-

ships among the data dimensions. Their method care-
fully chooses a set of factors including projection fac-
tors based on MDS and principal component analysis
(PCA), medoid factors, and distribution model factors
to represent the relationships among the data dimen-
sions. The representative factors are integrated into
the visual analytics pipeline to facilitate exploration of
high-dimensional data. The method was used to ana-
lyze the data from a healthy brain aging study with 315
dimensions and successfully discovered different subsets
of individuals.

Local affine multidimensional projection (LAMP)[62]

is a new projection method based on an orthogonal
mapping theory for handling high dimensional data.
LAMP is efficient and allows users to progressively re-
fine the results with their knowledge. The experiments
provided demonstrate that LAMP outperforms other
projection methods. A system developed using this
method was used to correlate images and music (see
Fig.8).

Fig.8. Visualization of image and music correlation using

LAMP[62].

Paiva et al.[65] described an improved similarity tree
technique for visual analysis of high-dimensional data.
It is an alternative to traditional multidimensional pro-
jections. A platform called VisPipeline was developed
to apply the technique to three image datasets and over-
come the difficulty in traditional data analysis through
visual feedback.

Turkay et al. [68] presented an interactive visual ana-
lysis approach that is performed iteratively over two
spaces: the items space and the dimensions space, thus
allowing for joint analysis of both items and dimen-
sions. The approach uses PCA to map the dimensions
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space to items space. This technique was tested on
the “Boston Neighborhood Housing Prices” dataset for
understanding the relationships between different data
dimensions.

5.2 Visual Methods

Visual methods leverage visualization layout algo-
rithms such as pixel-oriented methods and parallel co-
ordinate plots (PCPs)[25] to directly draw multivariate
data for analysis.

Pixel-oriented methods visually map each multiva-
riate data item to a pixel or block with visual attributes
such as color, size, and position[63,80]. A typical re-
cent example is DICON[59], an icon-based solution that
helps compare and interpret clusters of multidimen-
sional data. The icons representing the clusters can
be embedded into various visualizations.

Traditional multivariate data visualizations such
as scatterplot matrices and PCPs[125] can also be
viewed as projection-based techniques, since they draw
high-dimensional data in a two-dimensional space.
Researchers have recently introduced flexible linked
axes[60], which links a set of scatterplot matrices and/or
PCPs together for analyzing high-dimensional data.
This technique allows users to draw and drag axes
freely, which is useful for different applications. Fig.9
shows a visualization of high-dimensional demographic
data of different countries using the technique.

Fig.9. Flexible linked axes with scatterplots matrices and parallel

coordinated plots[60].

Although PCPs are widely used in the field, they still
suffer from the problems of over-plotting and clutter.
Angular histograms and attribute curves were recently
introduced by Geng et al.[61] to overcome these prob-
lems. They are able to explore the correlation in the
data by investigating the density and slopes of the his-
togram. This work was evaluated on real-world animal
tracking datasets and was compared with traditional
parallel coordinates plots and histograms.

5.3 Summary

This section reviewed and discussed recent ap-
proaches to visual analysis of multivariate data. The
approaches are categorized into two classes, namely,
projection-based methods and visual methods. Al-
though notable successes have been achieved, it is
still difficult to understand data with a large number
of dimensions due to the “curse of dimensions”[124].
Projection-based approaches based on dimension re-
duction can deal with data that has many dimensions,
but understanding the projected data is often challeng-
ing. On the other hand, visualization approaches can-
not handle data with many dimensions, but the results
created by these approaches are intuitive to understand
and interpret. Towards this end, Yuan et al.[70] made
an early attempt to combine PCPs and MDS. A seam-
less integration of two kinds of methods is an interesting
direction.

6 Text Data

Text can be found almost everywhere in billboards,
newspapers, books, social media sites, and so on. With
the advance of technologies, a tremendous amount of
text data is being produced, collected, and stored each
day. However, effective analysis of the text data is chal-
lenging for two reasons. First, the text data is often
free, unstructured text corpora. The data is inherently
ambiguous due to natural language ambiguity. Second,
the volume of the text data is usually huge. This pre-
vents analysts from reading the entire text corpora.

Many visual analytics techniques and applications
have been developed in recent years to address these
problems. They often leverage model-based analysis al-
gorithms such as topic modeling methods[126-127] from
natural language processing (NLP) to turn unstruc-
tured text into structured information, which can be
used readily by subsequent interactive visualization
approaches[75,79,84-85,120].

6.1 Topic-Based Methods

Topic-based methods extract topics or events from
text corpora and visually explore the extracted in-
formation using different visualization techniques. It
has been reported that the temporal information as-
sociated with the documents in text corpora is very
important for investigative analysis of the data[74].
Recent researches, such as EventRiver[79], Visual
Backchannel[77], and TextFlow[75], mostly analyze and
track on the temporal evolution and diffusion of events,
topics, or activities.

TextFlow[75] integrates topic mining techniques into
interactive visualizations to visually analyze the evo-
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lution of topics over time (see Fig.10). It uses a few
text mining algorithms to model topic evolution trends,
detect critical events, and find keyword correlations.
Three visual views including a topic flow view, a time-
line view, and a word cloud are employed to interac-
tively visualize the mining results and gain insights into
the massive text data.

Fig.10. Visualization of topic evolution illustrating the merging

and splitting patterns of topics over time by Textflow[75].

Whisper[72] is a system for visual analysis of informa-
tion diffusion. It uses a visual metaphor, “sunflower”,
to design a hierarchical social-spatial layout for visuali-
zing the propagation of a typical event over time on
Twitter.

More recently, Xu et al.[85] studied the competi-
tion among topics through information diffusion on
social media as well as the impact of opinion lead-
ers on competition. They developed a system with
three views: a timeline visualization with an integra-
tion of ThemeRiver and storyline visualization[128] to
visualize the competition, radial visualizations of word
clouds to summarize the relevant tweets, and a detailed
view to list all relevant tweets. The system was used
to illustrate the competition among six major topics,
such as economy, election, and welfare, during the 2012
United States presidential election on Twitter. This
work found that different groups of opinion leaders such
as the media and grassroots played different roles in the
competition (see Fig.11).

6.2 Feature-Based Methods

Feature-based methods use various features such as
word-level features[83] and document-level features[82]

to visualize text.
Word clouds are a commonly used method and have

received a great deal of attention in the last few years.
This method provides an intuitive visual summary of
document collections by displaying the keywords in a
compact layout. Keywords that appear more frequent
in the source text are drawn larger. A variety of al-
gorithms such as Wordle[83] and ManiWordle[78] have
been proposed to create good word cloud layouts. How-
ever, the semantic relationships between the keywords
in the original text are lost in the layouts. To handle

Fig.11. Visualization of topic competition and the impacts of

opinion leaders on the competition on social media[85].

this issue, researchers introduced methods such as the
force-based algorithm[76] (see Fig.12) and the seam-
carving algorithm[84] to produce semantic-preserving
word clouds. This can ensure that the keywords that
co-occur frequently in the source text are placed close
to one another in the word clouds.

Fig.12. Visualization of dynamic text corpora using a context-

preserving word cloud visualization[76].

FacetAtlas[73] integrates a node-link diagram into a
density map to visually analyze the multifaceted re-
lations of documents. The tool was used to explore a
document collection with over 1 500 articles. Interesting
multifaceted relations between different diseases were
discovered. DAViewer[86] was designed to help linguis-
tics researchers study the discourse of language through
a tree layout using interactive visualization.

Oelke et al.[80] described an interesting visual ana-
lysis application for answering “How to make your writ-
ings easier to read”. Their work uses a semi-automatic
method to choose proper features from 141 candidate
readability features. They developed a visual analysis
system called VisRA with three views, including the
corpus view, the block view, and the detail view, to
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explore the feature values of text corpora at different
levels of detail.

6.3 Summary

This section mainly introduced recent topic-based
and feature-based methods for visual analysis of text
data. Both kinds of methods are commonly used to
solve practical problems. Although some successes have
been achieved, visual analytics of text data still faces a
few challenges. It is still difficult, if not impossible, for
current methods to handle large amounts of text data.
More efficient text mining and NLP algorithms, as well
as scalable interactive visualizations, are needed to ad-
dress this issue. Another challenge is to handle the
natural language ambiguity and the uncertainty that
arises from the text mining algorithms. Finally, text
data is often accompanied by multimedia data such as
images and videos, which are even more challenging
for analysis. Heterogeneous text data with images and
videos can be complementary. It may allow users to
explore the data from different perspectives. Thus, ef-
fective analysis of the heterogeneous text data is worth
further study.

7 Graph and Network

Visual analysis of graphs is an important application
of visual analytics. This section covers only the research
published in the last few years and classifies the work
into two general categories: graph layout methods and
clutter reduction methods. Interested readers can refer
to a complete survey[14] for more details about the past
research.

7.1 Graph Layout Methods

Graphs can be visually represented by ma-
trix visualization[100], node-link diagrams[92], or
hybrid views of node-link diagrams and matrix
visualization[101].

Matrix visualization is widely used to represent
networks[100]. For instance, RelEx[107] employs ma-
trix visualization to help car engineers visually analyze
information communication in in-car networks. Nev-
ertheless, matrix visualization does not work well for
sparse networks. Compressed matrices[93] explore the
characteristics of a network and rearrange the matrix
visualization for a compact layout. It was used to dis-
cover subnetworks in a large network. Quilts[88] is also a
matrix-based method for visualizing very large layered
graphs such as flow charts.

Node-link diagrams are one of the most prevalent
visual representations for graphs[91-92,106,112]. In node-
link diagrams, nodes are linked with directed or undi-

rected edges to indicate the relationships of the nodes.
Node-link diagrams have been successfully used to ex-
plore and understand different kinds of traditional net-
work data such as social networks[91,114] and paper ci-
tation networks[94].

TreeNetViz[98] draws a node-link diagram in a radial
layout to visualize both the hierarchical structure and
network relationships in a social network. Fig.13 shows
TreeNetViz that displays both the hierarchical struc-
ture (such as schools and departments) and the network
relationship at different scales. Apart from traditional
networks, researchers have also employed node-link di-
agrams to visually analyze some other interesting data
such as set data[87] and interaction networks[105,109].

Fig.13. Visualization of a compound graph by TreeNetViz[87].

Analysis of elements of sets and their relationships
is an important task. LineSets[87] is a new visual ana-
lysis technique for set data. It uses curves to link the
elements across different sets to intuitively reveal the
element relationships. Compared with traditional met-
hods such as Euler diagrams, LineSets can reduce clut-
tered information and handle complex situations when
many sets overlap. The technique was used to visualize
sets of geospatial elements such as restaurants on a map
to facilitate visual search tasks. It was also employed
to analyze communities in social networks (see Fig.14).

StoryLine visualization has emerged recently as a
new and effective means to analyze dynamic relation-
ships such as the temporal interactions among the cha-
racters in a movie[105,109]. It is a new form of node-
link diagrams. In a storyline visualization, a character
is represented by a line, and the temporal interactions
between characters are encoded by the convergence and
divergence relationships of the corresponding lines over
time.
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Fig.14. Visualization of a co-authorship network by Linesets[87].

Tanahashi and Ma[109] described a set of design prin-
ciples, such as the principles for reducing line crossings
and wiggles, for creating proper storyline layouts, and
used a genetic optimization algorithm to automate the
layout generation process. Although the approach is
effective for creating aesthetically-appealing, compact
layouts, the layout generation process is time consum-
ing. Thus, it does not support user interactions.

Recently, StoryFlow[105] was developed to create
good storyline layouts quickly for interactive visua-
lization (see Fig.15). It uses an efficient hybrid opti-
mization framework with an integration of discrete and
continuous optimization. The efficient framework en-
ables a set of useful real-time user interactions such as
bundling and straightening. Furthermore, the approach
can faithfully convey the hierarchical relationships be-
tween entities in the created layouts. StoryFlow was
successfully used to study the dynamic interactions be-
tween opinion leaders on social media in the context of
2012 US presidential election.

7.2 Clutter Reduction Methods

Visual clutter is a commonly-found problem in in-
formation visualization[95]. With ever increasing sizes

of networks, reducing visual clutter has become even
more important for visual analysis of large networks.

Edge bundling[102-103] is an effective technique to re-
duce visual clutter and improve the readability of node-
link diagrams by bundling related edges along an adja-
cent path. Hierarchical edge bundling[102] takes advan-
tage of the hierarchy information in compound graphs
to bundle edges of the graphs. The technique was used
to explore and understand a software system (with hie-
rarchically organized components) and the call graph
between the components. The work was extended to
bundle edges in a graph using a force-directed technique
without the need of hierarchy information[103]. Selassie
et al.[108] improved the force-directed edge bundling
method to take into account the directional informa-
tion, such that high-level directional edge patterns can
be revealed intuitively.

Apart from forced-based methods, recent research
introduces other methods for edge bundling such as
the geometry-based technique[92] (see Fig.16) and the
skeleton-based technique[96] (see Fig.17). The geome-
try-based technique uses a control mesh to attract
edges to some control points on the mesh, thus gen-
erating edge bundles. In contrast, the skeleton-based
method extracts the skeleton of a graph and forces its
edges to be close to the skeleton. Compared with the
geometry-based technique, the skeleton-based method
can generate smoother bundling results while maintain-
ing the graph structure[96], and can be easily accel-
erated by graphics hardware as it is an image-based
method. Both methods were applied to understand US
migrations network data (see Fig.16 and Fig.17). Luo et
al.[106] introduced a new method to reduce ambiguity
in edge-bundling results and enable detail-on-demand
visualization. The system was evaluated using a co-
authorship network.

Parallel edge splatting[90] is a new clutter reduction
technique for visual analysis of large graphs. It over-
comes the over-plotting problem by rearranging graph
nodes on different parallel vertical axes, and connect-
ing the nodes between the axes using directed, colored
edges. This technique is capable of visualizing the evo-

Fig.15. Storyline visualization of movie The Lord of the Rings by StoryFlow[105].
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Fig.16. Geometry-based edge clustering[92].

Fig.17. Skeleton-based edge bundling[96].

lution of a dynamic graph. Zinsmaier et al.[112] pre-
sented a fast hardware-assisted layout technique using
the information of edge cumulation and node density to
reduce visual clutter. It also enables interactive level-
of-detail rendering of large graphs. The technique was
used to visually analyze large real world graphs to de-
tect patterns.

7.3 Summary

This section reviewed recent research of visual ana-
lysis of graphs. Although we have witnessed rapid
developments in the research area, it is still very dif-
ficult to visually analyze and explore large graphs, let
alone extreme-scale graphs with billions of edges. For
instance, current edge-bundling techniques usually han-
dle thousands of edges, but they may not work well for
larger graphs. Clutter reduction in large graphs needs
to be studied in the future.

Another possible direction is to combine model-
based analysis methods, such as graph partition and
frequent pattern detection methods, with interactive
visualizations. Model-based analysis can help filter out
a great deal of irrelevant information while preserving
interesting patterns in the graphs. Interactive visua-
lizations, on the other hand, allow analysts to work
closely with the model-based analysis process to evalu-
ate the results for sensemaking.

8 Conclusions and Future Challenges

This state-of-the-art report reviewed recent research
in the field of visual analytics. It represented a com-

prehensive overview of many advances in visual analy-
tics techniques and applications to gain a better un-
derstanding of the cutting-edge research in the field.
In particular, the report classified the work of visual
analytics research in a novel and systematic manner
according to the types of the applications and the steps
in the visual analytics process that the work focuses
on. Additionally, through the analysis and comparison
across different paper categories, this report identified
the trends and recent developments in visual analytics.
Furthermore, we divided the literature review into seve-
ral broad application categories such as space and time
analysis, text analysis, and network analysis. Next, we
discuss and summarize the key challenges of the future
visual analytics research.

Scalability. The explosion of data in recent years
presents a significant challenge to existing techniques
for visualizing big data interactively. While re-
cent visual analytics techniques can handle small or
intermediate-size data, most of them are not scalable
to extreme-scale data. With the advance of parallel
computing technologies, researchers have started to em-
ploy powerful computational hardware such as GPUs
to accelerate the performance of visualization layout
algorithms[47,112]. Nevertheless, the hardware-based
parallel acceleration cannot keep pace with the data
explosion rate. To overcome these issues, a variety
of new visual analytics mechanisms such as bottom-up
methods[91] and in-situ analysis[99] have been proposed
in recent years. It is expected that scalable visual ana-
lytics techniques and methodologies will continue to at-
tract substantial interest in the future.

Storytelling. Storytelling methods have received
a great deal of attention over the past several years
in visualization[105,109,129-130]. Narrative, interactive
visualizations are also widely used in data-driven
journalism to engage more users and reach a wider
audience[81]. Typical visual analytics applications usu-
ally include a step for creating reports on the findings of
the analysis. Interactive, storytelling visualizations can
benefit the reports by communicating the findings more
effectively for sensemaking, as narrative visualizations
can convey the entire story behind the patterns found
in the analysis. For example, storytelling visualizations
can provide in-depth insights into why there are such
patterns. Nevertheless, storytelling (or narrative) vi-
sual analytics is still in its infancy. The basic defini-
tion and the usage guidelines of storytelling techniques
are heuristics and subjective. The fundamental theo-
ries for storytelling visual analytics are worth further
study, and may involve multi-discipline research of hu-
man perception and cognition, human computer inter-
action, and visualization.
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Trustworthiness. Uncertainty information may arise
and spread in different steps of an analytics process[26].
Uncertainty modeling and visualization play a criti-
cal role in ensuring the reliability and trustworthiness
of the analytics process. Trustworthy visual analytics
with effective uncertainty modeling and visualization
enables users to explicitly consider the uncertainty in-
formation, so that informed decisions can be made[26].
Many techniques have been proposed to quantitatively
characterize the uncertainty information and intuitively
display the information[26,51,131]. However, due to the
complexity of different visual analytics applications,
there are still no widely accepted techniques. In the
future, research on trustworthiness will be extended.

Evaluation. It is always important to assess the ef-
fectiveness of visual analytics systems[29]. Visual ana-
lytics practitioners use various approaches such as case
studies, expert review, or formal/informal user stu-
dies to evaluate the usability and effectiveness of the
systems[132]. Each method has its own strengths and
weaknesses. For instance, a well-designed formal user
study can provide robust and valuable user feedback to
identify potential problems with the systems. However,
it is time-consuming to conduct a formal study and it
may be difficult to provide high-level insights. A typi-
cal visual analytics system is rather complex and may
involve multiple data analysis and visualization com-
ponents, which poses a great challenge to evaluate the
system. Effective evaluation of a visual analytics sys-
tem is expected to gain more interest in the field.

Provenance. Keeping track of a visual analytics pro-
cess has become prominent in the field, as the records
allow analysts to be informed of where they have been
and where they are now[133]. One straightforward usage
of provenance information is to allow for redo/undo user
interactions, or to avoid repeated analysis processes.
Furthermore, the provenance information of the gained
insight can facilitate the review and evaluation of the
knowledge or findings. The advance of collaborative
visual analytics highlights the importance of an effec-
tive mechanism for recording insight provenance, such
that collaborating users can share and exchange their
knowledge and insight judiciously. Nevertheless, exist-
ing simple history mechanisms, such as the Photoshop-
style history mechanism, may not work well in compli-
cated, collaborative scenarios, for instance, when users
work remotely on the same problem and need to fre-
quently exchange their findings. It is foreseeable that
research into this topic will need to continue.
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[19] Simoff S J, Böhlen M H, Mazeika A (eds.). Visual Data Min-
ing. Springer, 2008.

[20] Dasgupta A, Kosara R. Adaptive privacy-preserving visua-
lization using parallel coordinates. IEEE Transactions on



864 J. Comput. Sci. & Technol., Sept. 2013, Vol.28, No.5

Visualization and Computer Graphics, 2011, 17(12): 2241-
2248.

[21] Hullman J, Adar E, Shah P. Benefitting InfoVis with visual
difficulties. IEEE Transactions on Visualization and Com-
puter Graphics, 2011, 17(12): 2213-2222.

[22] Kandel S, Paepcke A, Hellerstein J M, Heer J. Enterprise
data analysis and visualization: An interview study. IEEE
Transactions on Visualization and Computer Graphics, 2012,
18(12): 2917-2926.

[23] Wickham H, Hofmann H. Product plots. IEEE Transactions
on Visualization and Computer Graphics, 2011, 17(12): 2223-
2230.

[24] Wu Y, Liu X, Liu S, Ma K L. ViSizer: A visualization re-
sizing framework. IEEE Transactions on Visualization and
Computer Graphics, 2013, 19(2): 278-290.

[25] Wu Y, Wei F, Liu S et al. Opinionseer: Interactive visua-
lization of hotel customer feedback. IEEE Transactions on
Visualization and Computer Graphics, 2010, 16(6): 1109-
1118.

[26] Wu Y, Yuan G, Ma K L. Visualizing flow of uncertainty
through analytical processes. IEEE Transactions on Visua-
lization and Computer Graphics, 2012, 18(12): 2526-2535.

[27] Munzner T. A nested model for visualization design and val-
idation. IEEE Transactions on Visualization and Computer
Graphics, 2009, 15(6): 921-928.

[28] Sedlmair M, Meyer M, Munzner T. Design study method-
ology: Reflections from the trenches and the stacks. IEEE
Transactions on Visualization and Computer Graphics, 2012,
18(12): 2431-2440.

[29] Lam H, Bertini E, Isenberg P, Plaisant C, Carpendale S. Em-
pirical studies in information visualization: Seven scenarios.
IEEE Transactions on Visualization and Computer Graph-
ics, 2012, 18(9): 1520-1536.

[30] Endert A, Fiaux P, North C. Semantic interaction for sense-
making: Inferring analytical reasoning for model steering.
IEEE Transactions on Visualization and Computer Graph-
ics, 2012, 18(12): 2879-2888.

[31] Bostock M, Ogievetsky V, Heer J. D3 data-driven documents.
IEEE Transactions on Visualization and Computer Graphics,
2011, 17(12): 2301-2309.

[32] Fisher D, Drucker S M, Fernandez R, Ruble S. Visualizations
everywhere: A multiplatform infrastructure for linked visua-
lizations. IEEE Transactions on Visualization and Computer
Graphics, 2010, 16(6): 1157-1163.

[33] Adrienko N, Adrienko G. Spatial generalization and aggre-
gation of massive movement data. IEEE Transactions on
Visualization and Computer Graphics, 2011, 17(2): 205-219.

[34] Afzal S, Maciejewski R, Jang Y, Elmqvist N, Ebert D S.
Spatial text visualization using automatic typographic maps.
IEEE Transactions on Visualization and Computer Graph-
ics, 2012, 18(12): 2556-2564.

[35] Andrienko G, Andrienko N, Hurter C, Rinzivillo S, Wrobel S.
Scalable analysis of movement data for extracting and explor-
ing significant places. IEEE Transactions on Visualization
and Computer Graphics, 2013, 19(7): 1078-1094.

[36] Andrienko N, Andrienko G. Exploratory Analysis of Spatial
and Temporal Data. Springer Berlin, 2006.

[37] Bak P, Mansmann F, Janetzko H, Keim D A. Spatiotem-
poral analysis of sensor logs using growth ring maps. IEEE
Transactions on Visualization and Computer Graphics, 2009,
15(6): 913-920.

[38] Buchin K, Speckmann B, Verbeek K. Flow map layout via spi-
ral trees. IEEE Transactions on Visualization and Computer
Graphics, 2011, 17(12): 2536-2544.

[39] Dang T N, Anand A, Wilkinson L. TimeSeer: Scagnostics for
high-dimensional time series. IEEE Transactions on Visua-
lization and Computer Graphics, 2013, 19(3): 470-483.

[40] Ferreira N, Lins L, Fink D, Kelling S, Wood C, Freire J, Silva
C. BirdVis: Visualizing and understanding bird populations.
IEEE Transactions on Visualization and Computer Graph-
ics, 2011, 17(12): 2374-2383.

[41] Haunert J H, Sering L. Algorithms for labeling focus regions.
IEEE Transactions on Visualization and Computer Graph-
ics, 2012, 18(12): 2583-2592.

[42] Haunert J H, Sering L. Drawing road networks with focus
regions. IEEE Transactions on Visualization and Computer
Graphics, 2011, 17(12): 2555–2562.

[43] Kim S, Maciejewski R, Malik A, Jang Y, Ebert D S, Isen-
berg T. Bristle Maps: A multivariate abstraction technique
for geovisualization. IEEE Transactions on Visualization and
Computer Graphics, 2013, 19(9): 1438-1454.
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