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With the rapid development of mobile Internet, the popularity of video capture devices has brought a surge

in multimedia video resources. Utilizing machine learning methods combined with well-designed features,

we could automatically obtain video summarization to relax video resource consumption and retrieval is-

sues. However, there always exists a gap between the summarization obtained by the model and the ones

annotated by users. How to help users understand the difference, provide insights in improving the model,

and enhance the trust in the model remains challenging in the current study. To address these challenges,

we propose VSumVis under a user-centered design methodology, a visual analysis system with multi-feature

examination and multi-level exploration, which could help users explore and analyze video content, as well

as the intrinsic relationship that existed in our video summarization model. The system contains multiple

coordinated views, i.e., video view, projection view, detail view, and sequential frames view. A multi-level

analysis process to integrate video events and frames are presented with clusters and nodes visualization

in our system. Temporal patterns concerning the difference between the manual annotation score and the

saliency score produced by our model are further investigated and distinguished with sequential frames view.

Moreover, we propose a set of rich user interactions that enable an in-depth, multi-faceted analysis of the

features in our video summarization model. We conduct case studies and interviews with domain experts to

provide anecdotal evidence about the effectiveness of our approach. Quantitative feedback from a user study

confirms the usefulness of our visual system for exploring the video summarization model.
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1 INTRODUCTION

With the rapid development ofmultimedia network technology and the popularity of video capture
devices, especially in the era ofmobile Internet, large-scale video sharingwebsites such as YouTube
have sprung up. Multimedia video resources have expanded rapidly, which may lead to issues such
as the increasing amount of storage resource consumption and challenges in mass video retrieval.
In the face of such dilemmas, video summarization is often seen as an effective way to promote
this problem [1].
The video summary techniques generate a concise summarization in an automated or semi-

automatic manner by extracting meaningful segments or keyframes from original videos [2].
The video summary could preserve the diversity of the original video while reducing storage
space and transmission time, which helps users quickly browse or retrieve videos. Early video
summary techniques are mainly based on the manual sampling of keyframes in the video. Al-
though such methods are easy to implement, they do not consider the coherence of video con-
tent. Following research relies on video and image processing technology, which utilizes fea-
tures such as color, texture, or shape to conduct motion detection, keyframes detection, or scene
clustering [3].
In the latest video summarization study, researchers usually combine typical machine learning

methods with artificially designed features such as motion and aesthetics to identify behaviors in
the video to obtain more accurate video summarization [4]. However, these methods face many
challenges in practical applications. First, machine learning–based methods sometimes result in a
poor quality of video summarization due to inappropriate feature extraction and model selection.
For example, too few features may lead to lowmodel accuracy, and toomany features may result in
an over-fitting phenomenon. In addition, due to the lack of datasets, some features are not consid-
ered during the training process. Therefore, the lack of intuitive and effective tools to analyze the
relationship between model results and input features is a daunting challenge. Second, difference
or temporal delays with respect to the determination of significant frames annotated by humans
and predicted by the model are commonly found in current experiments. However, limited by the
uncertainty of the parameters in the time series, it is difficult to compare these differences with
traditional calculation methods. Thus, how to help users analyze the difference between the man-
ual annotation score and the saliency score predicted by the model is the second challenge we face.
Third, the video summarization result is closely related to video types. For example, it is difficult
to apply one model to extract the summary of static, moving, or egocentric videos simultaneously.
Therefore, assisting researchers to explore video content and analyze the adaptability of the model
remains a major challenge.
In this study, we propose a visual analysis system named VSumVis with multi-video feature

examination and multi-level exploration (i.e., video, event, and frame), which could help users
explore and analyze video content, as well as the intrinsic relationship that existed in our video
summarization model. Through an iterative design study with domain experts, we collect a set
of requirements for understanding the feature-based video summarization model and exploring
video content, then identify visual design goals for constructing a visualization view. We further
propose a novel visualization system to support interactive and insightful analysis into the feature-
based video summarization model at three levels of detail. In addition, we propose a rule-based
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sampling algorithm to relax the visual occlusion problem caused by nodes overlapping. We then
perform case studies with domain experts on the SumMe dataset, which confirm the effectiveness
of our system. Finally, we conduct a quantitative user study to validate the usefulness of our vi-
sualization system for analyzing video content and the intrinsic relationship that existed in our
video summarization model. The key contributions of this work are as follows.

—We present a comprehensive analysis of multi-feature pattern extraction and multi-level
exploration for our video summarization model.

—We propose a visual analysis system that allows interactive exploration of the intrinsic
relationship among video summarization models, video features, and original frames.

—We provide case studies based on the SumMe dataset to evaluate the effectiveness of our
methods and a user study that verifies the usefulness of our visual analysis system.

2 BACKGROUND AND RELATEDWORK

This section reviews related work on video summarization techniques, multimedia visual analysis,
and explainable machine learning.

2.1 Video Summarization Techniques

Video summarization is a brief overview of video content, which is an important part of video re-
trieval technology. It reserves key content and consistency of the original video while compressing
the raw video, which provides users an intuitive way to view the video non-linearly. Video sum-
marization techniques mainly have two categories [5]. One is static video summarization, which
generates a series of keyframe objects composed of corresponding semantic units to summarize
the lens content and supports video fast navigation. The other one is the dynamic video summa-
rization, which maintains the intrinsic features of the video whose content dynamically changes
over time. There exists a clear difference between static and dynamic video summarization. Static
video summarization only considers the keyframe objects, ignores audio information, and gener-
ates faster than the dynamic one. Dynamic video summarization is richer than the static one and
combines information such as images, sounds, and text. In this work, we target the explanation of
the dynamic video summarization model, which relies on machine learning techniques. Our work
aims to visually explore the difference between the video summarization results obtained by the
machine learning model and human annotation, as well as the cause.
In recent years, due to the rapid development of artificial intelligence, automatically generated

dynamic video summaries through machine learning has become a hot topic in the video summa-
rization field. Gygli et al. [6] predicted the interest of video frames by linear regression and selected
the keyframes with the highest interest score. Zhang et al. [7] proposed a novel subset selection
technique that uses artificially created summaries to automate keyframe acquisition. Zhou et al. [8]
proposed an unsupervised video summarization method based on deep reinforcement learning. At
the same time, video summarization also provides a number of new ways to view videos. A typical
method is to use a collection of pictures or a storyboard using keyframes [9]. For example, Rother
et al. [10] propose a digital tapestry that automatically synthesizes an output image. The other
one is a dynamic representation such as video skimming [11] and video redirection method [12].
Based on machine learning technology, we deeply examine the video summarization model pro-
posed by us and present a new novel visual analysis system to perform in-depth multi-featured
pattern extraction and multi-level exploration for the video summarization model.

2.2 Multimedia Visual Analysis

Multimedia data includes audio, images, and video, and research has been progressing in a single
modal analysis. In the field of multimedia, data is presented as a history of progress in witnessing
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historical development. The emergence of sound cards in the 1980s marked the computer’s ability
to process audio. As digital images became the archives of the general public, research has evolved
from the traditional edge of individual images or frames to the study of video content. For example,
Aigrain et al. [3] studied images based on color, texture, shape, and spatial similarity. The Internet
tide has brought us massive multimedia information, and the development of technologies such as
machine learning and image processing has spawned a hot spot in video content research. Smeul-
ders et al. [13] focused on image processing, pattern analysis, and machine learning. In addition to
discussing the basic features such as color and texture, they also examined certain more advanced
topics and cover machine learning topics such as similar matching and semantic interpretation,
as well as database topics such as image indexing, storage, and querying. However, most of these
analyses of multimedia data tend to stay in the research of improving the technology itself rather
than evaluating and explaining them. Visual analysis provides a new perspective for multimedia
analysis. The visual analysis transforms information into a computable form and provides dy-
namic analysis intuitive visual guidance through human-computer interaction and various forms
of a visual interface [14]. The combination of visualization and multimedia analysis has greatly
contributed to the development of multimedia visual analysis.
Many visual analysis systems [15, 16] have been proposed to aid in multimedia analysis and

knowledge discovery. The proposed systems in related literature could be divided into two cate-
gories, i.e., analysis of video content and presentation of raw video. Regarding the first one, Wu
and Qu [17] use computer vision technology to capture multimodal content in video to explore
language and non-verbal skills in TED presentations. Zeng et al. [18] proposed a visual analysis
system to explore the consistency of multimodal emotions in speech videos. Kurzhals et al. [19]
describe the film content in multiple layers of descriptive features and apply it to content analysis
of popular movies. Liao et al. [20] proposed a visual-based active label method for video labeling.
Regarding the second one, Liu et al. [21] proposed a nonlinear dynamic representation called a
spiral band that summarizes the video in a smooth spiral pattern. Mei et al. [22] provided a com-
pact composite tile for a video sequence in several different layouts. Similar schematic diagrams
[9, 23, 24] and comic book–like graphics layouts [25] are also proposed for displaying video sum-
marization. In addition, multi-level granularity analysis presents challenges for multimedia visual
analysis. In the structure perspective, video is divided into short clips and frame levels, while in the
content perspective, it is divided into different granularity-like events, sequence, or lens. Certain
systems expand video content in a temporal sequence and analyze it at the video level in a linear
perspective [26, 27]. Other systems analyze videos at a single level of granularity, e.g., Renoust
et al. [28] utilized graphic design to visualize videos frame by frame. To solve these problems,
our proposed visual analysis system could support users to conduct multi-feature pattern extrac-
tion and multi-level exploration. Assisted with other coordinated views, users could obtain a more
detailed level analysis.

2.3 Explainable Machine Learning

In recent years, machine learning has been developed rapidly and has achieved remarkable suc-
cess in many research fields, e.g., artificial intelligence. Machine learning applications have an
extremely profound influence on our society. However, due to the inherent black box of machine
learningmodels [29], it is almost impossible for humans to understand themachine learningmech-
anisms and it lacks interpretation of how a machine model comes up with a specific decision. Re-
searchers have been enthusiastic about the decision-making progress and the expansibility of a
machine learning model. The visualization community has developed a variety of visual analytic
methods helping domain experts open black boxes of machine learning models [30–33]. Up to
the present, plenty of visual analysis methods have been proposed to help researchers with the
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interpretability and performance diagnosis of a model. Zhao et al. [34] explored the random forest
mechanism by designing multiple coordinated linkage views. Das et al. [35] proposed a novel visu-
alization technique that allows a user to detect multiple machine learning models and guides users
to build machine learning models that fit specific domain tasks. Similarly, visual analysis works
also contribute to the interpretability of neural networks [36–41], which reveals the inner logic
of prediction processes. Some studies focus on dealing with the data input to machine learning
models. Xiang et al. [42] developed a scalable data correction algorithm that aims at efficiently
processing thousands of tagged data. Kande et al. [43] proposed a visual analysis tool for assess-
ing quality issues in tabular data. It helps analysts discover and analyze anomalies hidden in the
dataset. Liu et al. [44] developed a visual analysis tool that helps experts validate undefined tags
and unreliable labeling in crowdsourcing. When it comes to the visualization of input-output of
machine learning models, Ming et al. [45] extracted standardized representations on rule-based
knowledge from the input-output pattern of the classifier. Different from those visual analysis
works on machine learning model interpretation and data explanation. We offered a visual analy-
sis system targeting comparing the machine learning results and the manual annotation results in
video summaries. By using multiple coordinated linkage views, users are allowed to interactively
explore the intrinsic relations among machine learning models, video features, and raw content.

3 DESIGN PROCESS AND REQUIREMENT ANALYSIS

Following a user-centered design methodology, we further investigated essential literature closely
related to the topic about video analysis [46], temporal analysis [47], and model analysis [48–50].
In this section, we first describe how we identified and updated research questions with domain
experts through an interview, and summarize the distilled requirements.

3.1 Design Process

VSumVis aims to help users explore the video summarization model and analyze the intrinsic rela-
tionship that existed in model input, output, and video content. To understand the current practice
and challenges of the feature-based video summarization model, our design process started with
a technology-sharing meeting. During the meeting, we conducted contextual inquiries to collect
information about the video summarization and difficulties encountered by model understanding,
which motivated the initial design of our system. In the later stages, we adopted an iterative devel-
opment approach by carrying out bi-weekly meetings with a group of domain experts comprising
one assistant professor who engaged in computer vision area research for more than 9 years and
four postgraduate students. During the meetings, we collected experts feedback on our early pro-
totypes and updated the system design. Specifically, the experts play a significant role in proposing
the feature-based video summarization model for this work, and their expertise in computer vision
helps us gain a deeper understanding of the model. Their experience makes them better aware of
the difficulties that users may encounter in improving their model analysis. At the same time, they
have deep insights into the limitations of traditional methods for model analysis. Thus, they have
a great interest to discuss the kinds of requirements in a feature-based model.

3.2 Requirement Analysis

The requirements are formulated throughout the 3 months and we summarize them as follows:

R1 What perspectives could be employed to analyze the model? How to associate the input and
output of the model with the corresponding video content. How to discover the patterns
among them in a more intuitive way.

R2 There are many diverse types of videos in the video collections. How could we help users
quickly locate videos of interest for effective analysis and exploration?
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Fig. 1. The pipeline of our work is divided into three steps. First, feature extraction is performed on the

SumMe video collections, and the features are further reconstructed and fed into our machine learning

model. The output of the model mainly consists of the saliency score of each image, and a descriptive score

of five predefined elaborated features. Second, manual annotation score, saliency scores predicted by the

model, and scores obtained by the five descriptive features are further visually explored and compared at

three levels, namely, video level, event level, and frame level, along with a temporal view. Finally, users could

interact with the system to diagnose the model and provide explanations and feedback for the model design.

R3 How are the scores of manual annotation and the scores predicted by the model distributed
over time? What is the difference between the two scores on each frame? When will signif-
icant anomalies occur?

R4 How are the input and output related in the feature-based video summarization model?
What is the dynamic correlation between the feature scores extracted from video and the
scores predicted by the model?

R5 How do the extracted features reflect the content in the raw video? Is there any temporal
delay compared with the manual annotation along with the sequential frames?

R6 Is there a certain similarity and connection among the frames in the video, and how does one
find out the connection between them and define this connection? How does one present
it intuitively through visualization?

These requirements help us draw the roadmap for our visual system and shape the detailed prin-
ciples of visual design.

4 SYSTEM OVERVIEW

Guided by the aforementioned requirements, we designed and developed VSumVis, a visual analyt-
ics system for interactively exploring a feature-based video summarization model. In this section,
we first describe our analysis pipeline and then briefly introduce each view of the system.
Our pipeline (see Figure 1) mainly consists of two parts: model analysis and interactive visual-

ization. The model analysis part is to extract elaborated visual features and semantic features for
each frame in the SumMe dataset video. The features are fed into our machine learning model to
extract the corresponding saliency score for each frame. The process is described in detail in Sec-
tion 4. In the interactive visualization phase, users could examine the patterns behind the model
through three-level exploration, namely, video, events, and frames level. Different views are closely
coordinated, and friendly and intuitive interactions are equippedwithin the system for exploration
among descriptive features, manual annotation results, and model output.
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Fig. 2. Our visualization system supports visual exploration within video, event, and frame levels. (A) The

video view provides users with overall distribution of summarization of video collections, which allows them

to quickly browse and locate videos of interest. (B) The projection view presents a multi-level analysis pro-

cess to integrate video events and frames into a single view with clusters and nodes visualization. (C) The

detailed view fully displays the detailed feature information of each frame as well as their relationship. (D)

The sequential frames view combines manual annotation score, saliency score predicted by the model, and

descriptive feature score into a pixel bar chart and Playfair-style chart to analyze the difference as well as

potential temporal delay.

Our system has four main views (see Figure 2). The video view (see Figure 2(A)) shows a list
of videos outlining the differences between saliency score by the model and manual annotation
score. Users could select videos of interest according to their preferences for further exploration. A
video panel is presented at the bottom of the video view to help users directly view the raw video
content. The projection view (Figure 2(B)) presents the clustering result of all frames in a single
video. This view embeds the characteristics of each frame including the scores manually annotated
by humans and the saliency score produced by our model. The lineup view and parallel coordinate
view (Figure 2(C)) display the relationship among the scores of different descriptive features as
well as the score from model and human. The sequential frames view (Figure 2(D)) provides a
straightforward visual comparison among the above numerical scores over video frames, which
allows users to examine significant frames in the project and detailed view. Section 5.3 of this
article will explain Figure 3 in detail.

5 MODEL ANALYSIS

This section elaborates on the details of model analysis, which contains three main parts, i.e., data
description, descriptive feature extraction, and our saliency generation model.

5.1 Data Description

The raw dataset, known as SumMe [6] in the computer vision research field, is composed of
25 videos, each of which lasts about 1–6 minutes. According to the video capture devices, all
the videos are divided into three categories: static video, egocentric video, and moving video.
The static videos were captured by fixed cameras, the egocentric videos were recorded by
head-mounted video devices, and the moving videos were taken while the camerists were moving
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Fig. 3. Our saliency score generation model. Each image frame is manually annotated and put into the

model together with the five descriptive features. Through repeated iterations, the weights in Formula (1)

are obtained and used for predicting the saliency score of all frames in other videos.

forward. Video annotation is further applied to all the videos in the SumMe dataset with each
video annotated by 15–18 people. These people are required to make a video summarization
for each video. After the manual annotation, each frame will obtain an importance score that
indicates how significant the frame is from the average perspective of participating users.

5.2 Descriptive Feature Extraction

To help researchers obtain a deeper understanding of each frame, and improve the summarization
accuracy in the videos, co-authors from the computer vision research field of this article performed
a series of descriptive feature extractions. The features we extracted fall into two categories: visual
feature and semantic feature.

5.2.1 Visual Features. The visual feature indicates the factors that play a vital role in attracting
video viewers, such as colors, image quality, motion cues, and visual saliency. It allows users to
intuitively perceive the video content and provides a visual perspective for users to analyze the
video summarization model (R1 and R5). Through the examination of current videos and literature
review, four features have been extracted from each frame in the videos, namely, motion feature,
memory feature, quality feature, and aesthetics feature.

Motion Feature. Generally, humans pay more attention to moving objects than stationary ob-
jects andmay bemore interested in themotion of the target object. Therefore, to reduce themotion
interference of other objects in the background. We use visual saliency [51] to predict the area of
people’s visual interest, and then extract the motion feature of the target object [52].
Memory Feature. Impressive fragments or anti-forgetting information would be kept in one’s

mind after watching a movie or a short video. We regard those video fragments as important com-
ponents that should be included in video summarization. Based on current works [53] and [54],
we use a memory dataset LaMem to train a deep neural network to predict memory scores.

Quality Feature. Quality assessment is used to assess whether the image is noisy, fuzzy, com-
pressed, or in other conditions. A low-quality video could be both visually and audibly discom-
forting. To obtain an excellent quality of the video summary, we introduce the quality assessment
prediction proposed by Hossein Talebi [55]. It employs a deep convolutional neural network to
predict the distribution of people’s opinion scores, and the obtained results have a high correla-
tion with human perception. We use the quality-related data of the image to train MobileNet, and
its output is the quality score we use in our current work.

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 4, Article 41. Publication date: June 2021.



VSumVis: Interactive Visual Understanding and Diagnosis of Video Summarization Model 41:9

Aesthetics Feature. A video’s lack of aesthetics may bring a poor viewing experience. The
aesthetic assessment is to quantify the aesthetic features in the image, which helps generate a
summary of the video that people may be interested in. Our work employs the aesthetic prediction
proposed in [55] to enhance our model’s ability to recognize the beauty of the picture. The output
value obtained from the MobileNet based on image-related data lies between 0 and 1, which is
considered as aesthetics score.

5.2.2 Semantic Feature. Video contains a wealth of semantic information, which is not negligi-
ble in extracting key content from the raw video. It is also the key judgment basis for measuring
the importance of frames. Therefore, it is difficult to merely rely on the above visual features to
simulate a multi-dimensional “taste” of human vision. Thus, it is vital to combine semantic features
with the above visual features to obtain a more comprehensive understanding of video summariza-
tion. Introducing semantic features into the video summarization model could better help users
discover a video of interest in the video collections (R2).
Visual-verbal saliency consistency Feature: Verbal saliency [56] indicates the meaningful

words digging out from a series of sentences describing a specific image. It shows a high correlation
between visual perception and semantic description of an image. The consistency of an image
description would be used as a critical indicator of semantic significance. Therefore, we introduce
visual semantic saliency as identification to pick out the frames that are highly correlated with the
corresponding video theme. The abbreviation of visual-verbal saliency consistency is VVSC.

5.3 Saliency Generation Model

Based on the above visual and semantic features, we need a mathematical model to incorporate
them to generate a quantitative score for later analysis (R3). In this section, we introduce our
saliency generation model to efficiently obtain saliency scores for each frame in the videos. As
shown in Figure 3, based on the feature extraction, we could obtain the above five descriptive
feature scores for each frame. The five feature scores are normalized and further fed into our
model to generate a saliency score (i.e., Sk ) for each frame. Sk is defined as follows:

Sk = w0 +

N∑

i=1

wi · ai +
N∑

i=1

N∑

j=i+1

wi j · ai · aj , (1)

where ai is the score of each normalized feature, N is the number of features, andw0,wi , and wi j

are the weights which are estimated using least squares. The obtained Sk will be further compared
frame by frame with the scores annotated by users.
After obtaining the scores of all frames, the original video is divided into multiple fragments.

We further calculate the average importance score of each segment, sort them in descending order,
and select segments that match our requirements (e.g., segment length is less than or equal to 15%
of the video length). As shown in the right red box of Figure 4, the selected video segments are
highlighted in the sequential frame view. These segments are then chronologically organized to
form the final video summary.

6 VISUAL DESIGN

This section introduces our visual design. Figure 2 shows our user interface that has four main
views. The video view (Figure 2(A)), which displays summary information for all the videos in
the video collections, helps users quickly locate the video of interest and explore. The projection
view (Figure 2(B)), which shows a two-dimensional distribution of all frames in a video, is pre-
sented to explore event-level and frame-level information. The detailed view (Figure 2(C)) shows
the details of descriptive feature scores, manual annotation score, and saliency score produced
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Fig. 4. In the left part, users could browse videos with any size resolution in picture-in-picture mode. In the

right red box of the figure, the selected video summary is highlighted in the sequential frames view.

by the model. The sequential frames view (Figure 2(D)) consists of two parts that show the
temporal distribution of the frame information of the selected video. The first part is a pixel-bar
chart (Figure 2(D1)) that displays the temporal distribution of the five descriptive features as well
as the model results, while the second part is a Playfair-style chart [57] (Figure 2(D2)) that presents
the difference between results obtained by saliency generation and manual annotation results.

6.1 Design Goals

We derive the following design principles to design visualization techniques that help to address
the research questions.

G1 Provide an overview of scores by manual annotation and saliency models in video

collections. In various categories of video, it is necessary to summarize the scores of man-
ual annotation and saliency models, which could help summarize the entire video collec-
tions and relax the issues raised in R2. An overview could help users identify videos of
interest, and guide users for further effective exploration.

G2 Multi-level visual exploration and analysis over a single video. Our work follows
basic principles in visualization design (i.e., overview first, zoom and filter, then details on
demand), which has been widely used in the study of complex data. First, we aim to provide
users with a summary of the video collections so they could identify the video of interest.
After selecting a video, users could further explore event-level information to analyze the
connections between adjacent frames. Users could drill down to the frame level to perform
detailed analysis within an event of interest, which is important for handling R5 and R6.

G3 Support joint multi-view analysis within video, event, and frame levels. A visual
analysis system should contain multiple views, which is closely coordinated with friendly
interactions to perform an in-depth exploration of visual analysis tasks. Therefore, the sys-
tem should enable users to interact with any view, and changes should be made to all other
views to explore the data from different perspectives (R1–R6). Video playback should also
be supported, and the presented data in different views should be linked to the raw video
content.
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G4 Reduce visual clutter of video frames presentation. In the visualization of video
frames, as the number of frames increases, the overlapping among nodes that represents
frames could be severe. This problem could easily reduce task performance or lead to
misleading information. Providing certain sampling algorithms to extract keyframes and
optimizing dimension reduction results may help reduce visual clutter (R3 and R6).

G5 Video content viewing under interactive guidance. Although the video view supports
free playback, it is unguided and time-consuming. Therefore, experts recommend that it is
necessary to associate with the video view through interactive brushing in the sequential
frames view with guidance information. Thus, the video view could provide more indica-
tions and purposeful exploration (R1 and R5).

6.2 Video View

The video view is the first part that provides users with initial exploration. During the design pro-
cess, we found it necessary to provide intuitive guidance for users to explore without introducing
a cognitive burden. Therefore, we present this part by following the principles of simplicity and
intuition.
As shown in Figure 2(A), the video view is divided into three parts. The top of the part

(Figure 2(A1)) is a legend that shows our color scheme for each feature to help users understand
the color combinations between colors and features. The middle part (Figure 2(A2)) is a video
list, which is also divided into three columns, i.e., video title, video category, and video summary.
The video title is the name of the video, and the video category is what type the video belongs
to, namely, moving, egocentric, and static. The third summary column consists of two parts. The
glyph on the left represents the performance (measured by F-measure score), which is indicated
by the length of the arc. On the right, a Playfair-style chart is used to represent the difference
between the saliency score produced by the model and the manual annotation score. The X -axis
represents the length of the video (i.e., frames), and the Y -axis stands for the score value. This
gives users a quick overview to help them locate the video segment of interest (R2).
After selecting a video segment of interest, the original video is displayed at the bottom of the

video view (Figure 2(A3)), allowing users to view the detailed video content. In this view, users
could drag and drop the timeline of the video to browse the raw video with any size resolution in
picture-in-picture mode, as shown in the left part of Figure 4. Together with the sequential frames
view, users could further utilize the provided interaction to find corresponding video content.

6.3 Projection View

The projection view is inspired by expert advice (R6) and acts as a major component.
We use the t-distributed stochastic neighbor embedding (t-SNE) [58] projection algorithm

to map all frames of the video. Each frame is described by a feature vector, which is constructed
in Equation (5). The vectors are further mapped to two-dimensional space since it is suitable for
embedding high-dimensional data into two-dimensional space to obtain a quick overview of large
data. The closer two nodes are in two-dimensional space, the more similar they behave in the high-
dimensional feature vector space. As a result, each frame is mapped to a two-dimensional dot, and
similar frames are placed nearby.

Vc = [Svvsc , Smemory , Smotion , Squality , Saesthetics ], (2)

where Svvsc , Smemory , Smotion , Squality , and Saesthetics represent five features, i.e., visual-verbal
saliency consistency, memory, motion, quality, and aesthetics of each frame, respectively.
Initially, each frame is represented by a dot, but this does not give users any visual indication

and introduces severe visual clutter. Therefore, according to the requirements of the analysis task
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Fig. 5. Our alternative and final glyph designs. (a) A nested pie chart design. (b) A treemap-based design.

(c) An event-based projection with a glyph design showing feature information of the frames in the cluster.

(d) Glyph design of a single frame, starting from the top of the ring; orange indicates manual annotation

score, while green indicates saliency score produced by the model. The number inside the circle indicates

the current frame ID.

(R4–R6) and our design goal (G2, G4), we use a color gradient to characterize the chronologi-
cal order of the frames. The brighter gray value indicates initial frames, while the darker gray
value stands for the later frames. Thus, users could obtain an overview of how temporal patterns
are presented in the projection view. We further use the DBSCAN algorithm to cluster the two-
dimensional vectors obtained by dimensionality reduction to obtain multiple clusters. We regard
each cluster as an event in the video since we find that the frames in a cluster are mostly con-
tinuous and there is a certain similarity between adjacent ones. After reviewing corresponding
original video clips, this speculation is further verified. In addition, we have added a new glyph
design that provides users with an overview of the features of each cluster to facilitate comparison
and selection among clusters.
In the design process, we considered several alternatives as shown in Figure 5. Though pie

chart design (Figure 5(a)) could present the descriptive feature score completely, it will introduce
additional visual clutter when overlaying the number of frames on it. As for the design based on
treemap (Figure 5(b)), it may cause visual confusion and lack of legibility.
Our final design (Figure 5(c)), which combines the advantages of circle and sector, consists of

two parts. The internal circular radius encodes the number of frames in the cluster. The larger the
radius, the more frames the cluster contains. Color is used to encode the difference between the
model and the manual annotation in the cluster. The deeper the green is, the higher the saliency
score produced by the model is than the manual annotation score. The deeper the orange, the
higher the manual annotation score is than the saliency score produced by the model.
The five equally divided circular sectors are used to encode the five features extracted from the

frame image. More specifically, the color is used to represent the name of the feature, and the
radius is used to indicate the size of the descriptive feature score. The larger the radius, the greater
the average descriptive feature score for all frames in the cluster.
Considering expert advice, it is necessary to drill down to frame level in this view. However,

since the current view covers all frames of the video, there are too many nodes in the limited
screen. The overlapping between nodes is severe, which causes visual confusion, and the dot con-
taining only the time information is not enough to provide more visual information for users. To
better utilize our system in many frames, we have optimized the projection view. For each cluster,
we propose a sampling algorithm to sample the frames in the cluster to enhance the visibility of
important frame information.
We combine three customized indicators to sample the frames in the cluster, which are im-

portance indicators, influence indicators, and stability indicators. The calculation of the indicator’s
formula is as follows.
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Inimpor tance = (Shum + Smac )/(Shum + Smac )max , (3)

Ininf luence = (Disbf + Disaf )/Dismax , (4)

Instabil ity = (1/|Shum − Smac |)/(1/|Shum − Smac |)max . (5)

Among them, Shum represents manual annotation score, Smac represents saliency score produced
by the model, Disbf represents the geometric distance between a frame and the previous frame,
Disaf represents the geometric distance between a frame and the next frame, and Dismax repre-
sents the value of the longest geometric distance between two frames in the cluster.
We use the distance between a frame and the two frames before and after it to characterize the

influence. If the distance between a frame and the previous frame or the next frame is relatively
large, it means that the similarity of the two frames tends to be low. Such a frame could be a video
scene switch or content mutation, which should be retained.
We further employ a higher model score or manual annotation score to characterize the im-

portance. If the saliency score produced by the model or manual annotation score of the frame is
relatively high, such a frame is likely to be a keyframe in the video and should be retained. For the
stability indicator, we use the closeness of the saliency score produced by the model to the manual
annotation score to indicate the stability of the frame. If the saliency score produced by the model
is closer to the manual annotation score, the frame is more stable. Such frames are often selected
as video summary frames and should be retained.
In this article, frame sampling is mainly utilized to reduce severe visual occlusion in the pro-

jection view. Since the information among closer frames is basically similar, the sampling part of
the frames would not have a prominent negative impact during visual analysis. In the projection
view, if the radius of the frame’s glyph is x, we take the position of a frame as the center and 2x
as the radius to keep the frame with the highest importance, influence, and stability in this circle
during sampling. Since the selection of different starting frames could lead to different sampling
results, we employ a full quadtree to calculate the density of each node. First, starting from the
node containing the largest number of frames, and the frame closest to the geometric center of
the node as the start frame. Then traverse in sequence according to the distance between frames
from small to large. Finally, start from the node with the next highest number of frames, and so
on. We have found that when the length and width of the nodes are four to five times the diameter
of the frame’s glyph, the effect of stopping the process of splitting the grids of quadtree intends
to be optimal after experiments, given the length of our projection view is 800 px and the width is
640 px.
The projection view, as well as the sampling process, are shown in Figure 6. It can be seen

that the visual clutter and occlusion among frames in the projection view have been alleviated to
a different extent. The number of frames is reduced while the relative position among frames is
maintained. In addition, the information of keyframes is preserved while reducing the redundancy
of similar frames. Users could also click the frame node in the sampling view to examine the three
indicators of certain frames.

6.4 Detailed View

As shown in Figure 2(C), the detailed view is interactively linked to the projection view, providing
detailed information and exploration.
In the top half, we provide a parallel coordinate view to display statistics for all frames of the

selected video. In this view, each polyline corresponds to score information for one frame in the
projection view, including descriptive feature scores (i.e., vvsc, memory, motion, quality, and aes-

thetics scores), saliency score produced by the model, and manual annotation score, as shown in
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Fig. 6. Sampling process of the glyph nodes in the projection view. Based on three customized indicators,

our sampling algorithm could alleviate the severe occlusion issue among the larger number of frames, while

preserving keyframe information in the projection view.

Figure 2(C1). Users could select a specific sequence whose attribute value is within a certain range
by brush on each coordinate, and the polyline selected by the brush is highlighted. Other polylines
are grayed out and remain as the background. In the lower part, we provide a LineUp [59] view
(Figure 2(C2)) to show the statistics of the cluster and the differences between different clusters. In
this view, there are eight columns, showing the number of frames, five descriptive feature scores,
saliency score produced by the model, and manual annotation score. In the dotted box at the head
of the view, the distribution of scores in each scored segment is provided. At the same time, it also
supports typical interactive functions such as filtering and sorting.

6.5 Sequential Frames View

The sequential frames view provides a novel perspective for user exploration in the temporal
dimensions.
To reveal the overall temporal trend of the scoring situation, and explore the detailed video

content andmodel effects, together with the advice of the experts (R3–R5), we propose a sequential
frame view to provide users with a temporal exploration analysis. In this view, we use two sub-
views to display all the information of the video comprehensively by switching the view.
As shown in (Figure 2(D2)), the Playfair-style chart reveals the score distribution and difference

between the saliency model and the manual annotation. The X -axis represents the length of the
video, and the Y -axis represents the score per frame. The green polyline indicates the temporal
distribution of our saliency score produced by the model, and the orange polyline indicates the
temporal distribution of the manual annotation score. The light-orange area indicates that the
manual annotation score is greater than the saliency score produced by the model during this
period, while the light-green area indicates that the saliency score produced by the model is
greater than the manual annotation score during this period. Users could switch to the feature
score view by clicking the toggle button, which is presented in (Figure 2(D1)). This view shows
the overall temporal trend of the five features of vvsc, memory, motion, quality, and aesthetics.
The color corresponds to the legends illustrated in (Figure 2(A1)).
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At the top of the two subviews, we also provide an additional pixel bar to represent the propor-
tional change in saliency score produced by the model and manual annotation score over frames.
The color of the bar in the pixel bar view represents diverse types of scores, and the height in-
dicates the value of the size, i.e., green indicates the saliency model and orange indicates manual
annotation.

6.6 User Interactions

Our system VSumVis supports a variety of interactions, giving users powerful visual analysis ca-
pabilities. The four views provided in the system are well-linked together. Here, we summarize
the interactions used in our proposed system.
Basic Interaction.When users click on the video of interest in the video view, the correspond-

ing video is selected and other views are updated accordingly. In the projection view, when the
users’ mouse moves over the cluster glyph of interest, the corresponding frame in the cluster will
be selected and highlighted. When the mouse is clicked, the selected cluster will be displayed on
the current page in an unobstructed layout. In the detailed view, the details of all the frames in
the cluster are displayed. The re-layout node also supports click operations and then displays the
frame information of the node in the detailed view.
Brushing.When users brush the sequential frames view, the detailed information of the frame

in the selected frame range and the original video content of the corresponding period in the video
view are displayed in the detailed view. In addition, the parallel coordinate view in the detailed
view also supports the brushing operation.
Searching and Sorting. Searching and sorting in the video view and detailed view, we add

search and sort interactions to allow users to quickly find frames of interest. Users could perform
specific frame searches based on instructions from other views and sort various scores according
to specific criteria.
Lassoing. We have added lasso tools to support free exploration. In the projection view, users

could use the lasso tool to select the frame nodes of interest, and in the detailed view, the details
of the frame of the selected area are displayed.

7 EVALUATION

This section presents two case studies and a user evaluation to demonstrate the usability and
effectiveness of VSumVis.

7.1 Case Studies

We use the SumMe dataset to visually explore the diagnosis mechanism and select the video Jumps

and the video Air Force One to perform a detailed analysis of the single video. This section shows
how users could perform diagnosis tasks on saliency models and video content through a visual
analysis system.
Visual Diagnosis Based on Video Content. This case study shows how VSumVis could help

users analyze video content and quickly locate keyframes. We chose the video Jumps as the pri-
mary unit of analysis to explore its diagnosis methods.
VSumVis allows users to quickly browse summary information for all videos in the SumMe

dataset and accurately select the videos of interest. The video view is shown in Figure 2(A). It
shows the names, categories, and summary information for each video in the video collections, as
well as raw video playback. The summary information shows the scores of the two scoring schemes
along with the specific trend of the video frame. For example, in the summary information of the
video Jumps (Figure 7(a)), it is apparent that the two-color lines of the time period T (see ArrowT in
Figure 7(a)) tend to be relatively high and relatively similar. It indicates that the video Jumps both
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Fig. 7. (a) Select a video of interest based on the summary information in the video collections. (b) Two-

dimensional projection of all frames of the Jumps video, and corresponding cluster information. (c) Re-layout

of the frames in the cluster. (d) The area of the keyframes in the video Jumps with Playfair-style chart.

(e) Investigation of the keyframes with visualization of the five descriptive visual features based on the pixel

bar chart.

have a higher score with respect to the saliency model and manual annotation during this time
period, which also implies that the video in time period may contain more keyframes. Effective
real-time contextual exploration of video content through video views promotes user confidence
in the summarized information.
VSumVis allows users to explore detailed content in the video. We first select the video of inter-

est (e.g., Jumps) in Figure 7(a), which is a Moving type video with a duration of 39 seconds (a total
of 940 frames). The projection view (Figure 7(b)) shows the two-dimensional distribution of all the
frames of this video. Observing the six clusters formed by clustering in this view, we could boldly
assume that the content of the video could be roughly divided into six events. The diameter of the
circle in the glyph of each cluster indicates the duration of the event (i.e., number of frames). For
example, the circle of the glyph in the middle of the projection view is the largest (see Arrow D
in Figure 7(b)), and we could find the cluster is composed of 369 frames through examination. By
observing the video view, the main event in the video is a group of people celebrating. In addition,
observing the sector of the periphery of the cluster glyph, it is also possible to view the average
score of the features of the video frame image composed of the current event. We could see that
the average score of the cluster’s memory, quality, and aesthetics features are relatively high.

In addition, in the projection view, we observe the specific events of the video content (such as
the pull of the lens, the man sliding from the slide to the sky, landing in the pool, and the celebra-
tion phenomenon). However, such analysis stays at the event level; the exploration of the entire
video content is not careful enough. To further analyze the composition details of the event, we
click on the current cluster glyph, and the original projection view area is switched to the current
cluster’s dot plot (Figure 7(c)). It shows the frame composition of the clicked cluster. Each node has
corresponding frame information and is bounced off by the collision detection mechanism under
analog force, thereby avoiding visual overlapping and information confusion. We could see that
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each node is tiled in the view area without overlapping each other. By linking to the detailed view,
users could see the specific information and distribution of each frame.
VSumVis could position keyframes and perform analysis of video content with sequential

frames view. Figure 7(d) shows the temporal distribution of the video Jumps. We could see that
during the period of 315th–356th frames (see arrow A in Figure 7(e)), both the green and orange
polylines have reached a peak. This means that the saliency model and manual annotation give a
fairly high score for the image frame in this period. To further confirm our observation, we stud-
ied why the saliency model has a high score, and whether there is a certain correlation between
the score and the input features of the model. By clicking the button (Figure 7(e)), we switch the
current page to the feature view. When examining the temporal trend of five descriptive feature
scores during that period, we found that the scores of vvsc, motion, and quality features are gen-
erally higher than those of other periods. The motion feature is particularly high in this period
and behaves extremely low in other periods. The region’s motion feature score (see arrow C in
Figure 7(e)) reaches a fairly high level, and we suspect that this may be the main factor for the
high saliency model score. After further observing the content of the raw video, we find that the
people in the video are playing air taxiing, which means that the motion feature is well-extracted
from the video. This confirms the reason for the high score of the model. In addition, we observe
that the ratio of green and orange in the pixel bar chart is close to 1:1 (see arrowB in Figure 7(e)), in-
dicating that the scores of manual annotation and the scores of saliency models during this period
are remarkably high, and the difference between the two is small. We speculate that this period is
a period containing many keyframes.
Visual Diagnosis Based on Saliency Models. The effects of the diagnosis mechanism in

VSumVis have been verified through multiple examinations of the machine learning model on
SumMe data.
VSumVis could help users with a better understanding of the model performance and model

hysteresis. The analysis of the Jumps video helps to clarify the hysteresis phenomenon in the
model as shown in Figure 8. In the left Figure 8(a), the manual annotation score climbs quickly
from the 289th to the 308th frame with a sharp rising curve. The corresponding images of the
two frames in the video are shown in the top-right, where the person in both of the images is
going to slide out from the wooden chute. However, the saliency score curve in the same time
period looks gentle and then rises rapidly in five frames (from the 312th to the 317th frame). The
bottom-right plots in Figure 8 show the images of the two frames, i.e., the 312th frame, and the
317th frame, in which the person slides out from the wooden chute. We define such a phenomenon
as model hysteresis, which means the reaction of the saliency score curve is always a bit behind
the manual annotation score curve. We suspect it is the prior knowledge of mankind that leads to
model hysteresis. While annotating the video, one would score it high before a scene moves to its
peak moment. The machine learning model lacks a perception of actions. Thus, only if a frame has
significant features, may it mark the frame with a high score.
Similarly, we observe a greater hysteresis in the air force one video which depicts the landing

of the airplane. In Figure 8(b), from the 3,954th frame to the 4,054th frame, the airplane is moving
from a straight line and starts to turn, which is a coherent action. From the model’s perspective,
the five features of the image in this period do not change much. However, humans are able to
know in advance that “it is going to turn right away,” so they start to pay attention ahead of the
computer. From the 4,070th frame to the 4,211th frame, during the turning action of the airplane,
the computer-calculated features change and the motion score begins to rise. After observing the
video collections, we found that in the videos of the static type, the probability of this hysteresis
phenomenon is the largest, and ranks second in the moving type video and third in the egocentric
type video. The result is in line with our understanding. Regarding the static type video, since
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Fig. 8. Hysteresis phenomenon in the model. (a) Regarding the video Jumps, the model has a hysteresis

phenomenon in the time period when people slide out from the wooden chute. (b) Regarding the video Air

Force One, the model has experienced a hysteresis in the time of period when the airplane turns.

the camera position is fixed, the video content tends to be stable. Thus, our model could capture
the features of each frame. Regarding the egocentric type videos, the camera is less stable when
shooting the egocentric type of video as the shooting device is fixed on the photographer’s head,
so the picture is unstable during feature extraction, and subtle changes are not easy to capture in
adjacent frames. Our visual analysis system provides a new perspective to study the performance
of the saliency model by exploring the possible hysteresis between model output and manual
annotation.
VSumVis allows users to quickly understand the relationship between features and model out-

put. When we observe the parallel coordinate view, we find that there is significant differentiation
between the saliency score produced by the model and the motion score. As shown in Figure 9(a),
we speculate whether there exists a connection or not. Thus, we perform navigation in the se-
quential frames view, and when sliding to the 300th to the 323rd frame (see arrow A in Figure 9(b)),
the motion score becomes higher. To confirm our speculation, we click the button to switch to the
feature view; the trend of themotion is relatively high (see arrow B in Figure 9(c)). We shift our eye
to the detailed view, and we find that the scores for motion and saliency model begin to diverge,
and the score becomes higher. We speculate that the increase in the saliency score produced by
the model at this time is mainly due to the increase in the motion score. We then view the corre-
sponding image frame (Figure 9(d)), and it verifies the changing process (a person slides from the
wooden chute to the sky).
VSumVis could provide an explanation for the large difference between the saliency score pro-

duced by the model and the manual annotation score. In the period from the 1,830th to the 2,130th

frame (see arrow A in Figure 10(d)), it could be seen that the orange polyline is much higher than
the green polyline, and in the pixel bar, the orange portion accounts for a considerable proportion.
An explanation during this time period could be the following: human observations believe that
the series of frames is important, and the manual annotation score is high. However, the model
predicts the score to be kind of low. By examining the raw video, it is the scene when the airplane
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Fig. 9. Exploring the potential relationship between the saliency score produced by the model and cor-

responding features. (a)–(c) Exploration process from parallel coordinate view to sequential frames view.

(d) Verification from the raw video frames.

Fig. 10. (a) The video shows that the airplane is about to land. (b) The airplane is landing. (c) The plane is

already landed. (d) Visual analysis process for anomaly frame fast located. (e) The anomaly raw video frames.

is landing (Figure 10(a)–(c) are the image frames of the upcoming landing, landing, and landed, re-
spectively). After landing, the dust generated by the landing of the airplane caused visual attention.
The information was attracted by human vision, and the model did not capture the correspond-
ing information in time. We speculate that this is because there is no corresponding feature to
extract the information of these changes, resulting in a large deviation between model prediction
and manual annotation. Combined with the hysteresis, the model is not consistent with human
observation when the airplane is about to land.
VSumVis could quickly locate the location of the anomaly frame and explore the cause while

offering a certain explanation. Similarly, in the period from the 1,830th to the 2,130th frame, we find
that the saliency score produced by the model of the individual frames tends to be an anomaly. We
speculate that this is due to a sudden change in a feature, thus we switch to the feature view (see
Aarrow B in Figure 10(d)). It is found that during this period, the quality score suddenly decreases,
indicating that our speculation is in the right direction. To find out the anomaly frame for an
in-depth analysis, we select the corresponding period in the feature view. In the detailed view, it is
verified that the quality feature has a low score. We sort the columns of quality from small to large
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Fig. 11. (a) Evaluation tasks and analysis of the passing rates. (b) Analysis of the ratings: all questions

received an average rating greater than 5, which was very encouraging.

in the LineUp view and find the position of the anomaly frames, which are the 1,987th, 1,988th,
and 1,989th frames (see arrow C in Figure 10(d)), respectively. On the other hand, we want to
verify the validity of our t-SNE algorithm. According to the algorithm’s dimensionality reduction,
the anomaly frame should deviate from other frames in the region. By using the lasso to select
the area that deviates from the other frames in the projection view (see arrow D in Figure 10(d)),
we find that the above anomaly frame is in the selected area of the lasso in the LineUp view (see
arrow E in Figure 10(d)). This confirms our speculation of the anomaly frames. To further analyze
the cause of the anomaly frame, we look up the video segment where the frame is located in
the video view (as shown in Figure 10(e), three anomaly image frames are excerpted), and find
that it may be dust or birds caused by airplane landing, which reduces image quality to a certain
extent.

7.2 User Study

Next, we conducted a laboratory study to examine how well users can use our VSumVis to explore
and gain insights into video content as well as the summarization information. The study also
aimed to find any usability issues for improving the system.

7.2.1 Participants. We invited 11 students (6 male, 5 female) between the ages of 19 and 27, to
evaluate the proposed system. They were not the co-authors of the article. They comprised both
undergraduate and postgraduate students, with backgrounds in computer science, automatic, elec-
trical engineering, and machine learning. All of them had certain knowledge in the visualization
or machine learning field. Thus, they are competent for analysis tasks. The participants were iden-
tified as P1–P11, respectively. The use study was conducted based on the SumMe dataset.

7.2.2 Tasks and Procedure. At the beginning of each study, we demonstrated every detail of
VSumVis and provided a tutorial for each participant. Once each participant is familiar with
the system, the dataset is loaded, and the participant is asked to complete a series of tasks
(Figure 11(a)) to explore the video content using VSumVis. These tasks appropriately cover various
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visualization components. If necessary, participants can request further explanations of the func-
tions of VSumVis. When the participants completed the task, they were asked to rate various as-
pects of VSumVis on a Likert scale (from strongly disagree to strongly agree which is represented
with 1–7). Among them, according to the specified four videos, T2 and T7 are divided into four sub-
tasks. Those tasks (shown as T1-T7 in Figure 11(a)) were designed to utilize all visualization views
and reflect the complete set of proposed requirements in Section 3.2. Specifically, T1 correspond to
R1; it is used to test how users find interesting videos in the video collections. T2, T3, and T4 cor-
respond to R6; many similar frames may form clusters, and we design glyphs to distinguish them.
T3 and T4 test the effectiveness of glyphs. As for T2, the frames in the dense clusters are usually
similar, which is used to examine whether users could observe similar patterns in the projection
view. T5 and T6 correspond to R1, R4, and R5; these tasks would test how users discover patterns
that existed in the model and how they explore the dynamic association between frames, input fea-
tures, manual annotation, and model output from a system view. T7 corresponds to R3; keyframe
areas often are areas where significant anomalies occur; it could help users find them. The task-
based assessment could help participants better understand the system, thereby ensuring that they
can obtain more objective and comprehensive feedback on the individual functions of the system
and the entire system from the participants. At the end of each study, users are free to explore the
system. We conducted post-study interviews to collect feedback from participants. The user study
for each participant lasted approximately 40 minutes and was conducted on a 23.8-inch monitor.
The above evaluation received an average pass rate of 90.9% with a standard deviation of 0.24.

The pass rates of T3 and T4 are both 100%, which proves the effectiveness of VSumVis in dis-
covering interesting videos and cluster glyph design. The pass rate of T7 is one of the lowest.
During the interview, we learned that most of the participants had doubts about the definition
of keyframes. Since the model score is a fitting result of the manual annotation score, there may
exist a divergence between the saliency score produced by the model and the manual annotation
score. Therefore, in the sequence frame view, when certain manual annotation scores are relatively
higher, while the saliency scores produced by the model are lower, participants may hesitate when
deciding. It is because of these differences that users can pay attention to which frames model
may have problems and then analyze which aspects of the model itself can be improved for these
frames.

7.2.3 Questionnaire. Participants completed a questionnaire with nine questions. Figure 11(b)
shows the questions and average user ratings. For each question, users are asked to rate the
satisfaction of the system. In the overall satisfaction score of the system, users have the high-
est satisfaction with the system (reaching the highest score of 6.09). Based on the results of Q2
and Q3, VSumVis seems easy to learn and use. This is an encouraging result because unprac-
ticed users can complete fairly complex exploration tasks with minimal assistance during the
experiment. When considering each component separately, participants believed that the visual
performance and interaction of the projection view were intuitive during the exploration pro-
cess (Q7). However, even though the video view was deemed useful (Q4), participants found
the list-based video collection difficult to understand at first glance (Q5). After discussions with
the participants, we found that this result was due to the lack of metaphors in their brains.
Through demonstrating the use of the video view, they got used to it. We also found that the
sequence frame view received the highest score (Q6–7) in terms of usefulness and intuitive-
ness. After interviewing the participants, we found that they appreciate the real-time interac-
tion with the video content in the process of exploring the difference between manual annotation
and model scores. In general, the average score for all questions exceeds 5 points, which is very
encouraging.
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Fig. 12. (a) An abnormal pattern amongmotion,memory, and aesthetics features is observed in parallel coor-

dinates. (b) Performance grid view to demonstrate the overall distribution of the impact by the model terms

as well as their interaction. (c) In the video Valparaiso Downhill, a lot of scene changes are observed in less

than 2 seconds (from the 4,800th to 4,840th frame).

7.3 Experts Feedback

To evaluate the effectiveness of VSumVis, we interviewed one assistant professor (PA) who en-
gaged in computer vision area research for more than 9 years and four postgraduate students. PA
also plays a significant role in proposing the saliency generation model for this work, and he is
eager to know how the interaction among different features may affect the model performance.
Thus, we first describe the visual encoding and user interactions in VSumVis and then demon-
strate the patterns observed in the case studies. PA is convinced by the effectiveness of the system
and conducts a diagnostic evaluation of the VSumVis himself to find out whether the interaction
of the above five descriptive features may affect the model performance or not.
During the exploration process, PA observes an abnormal pattern between several features us-

ing parallel coordinates. For example, regarding the Air Force One and Jumps videos (as shown
in Figure 12(a)), the value of motion score tends to be relatively higher, while the memory and
aesthetics scores tend to be lower. This pattern could also be found in a bunch of videos of dif-
ferent types. However, the impact of such a pattern varies among different video types, which
may lead to unreliable performance if we employ a uniform model (i.e., with the existence of all
item interactions) to generate saliency scores for all videos. Therefore, PA speculates whether the
term interaction in the saliency generation model with respect to the above features may affect
the model performance. Thus, PA considers removing the specific interaction terms in the model
through the model manipulation interaction in the VSumVis system to examine the later model
effect. The performance of the model output is evaluated with F-measure and visualized with a per-
formance grid view to examine the overall distribution of term impact (as shown in Figure 12(b)).
Each row represents the model performance (measured by F-measure score) with the inexistence
of a specific interaction term, and each column represents a specific video in the SumMe dataset.
The color in each grid indicates the model performance. The greener the grid is, the better the
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performance tends to be compared to the default model, and vice versa. The performance grid view

supports row and column reordering under different criteria to better reflect the overall patterns
in the video collection. For example, in Figure 12(b), rows with the higher number of redder grids
are placed upwards, and vice versa.
Through observation of the performance grid view, PA finds that removing the interaction terms

of motion and aesthetics results in better performance of the salience generation model (see arrow
A in Figure 12(b)), which arouses his interest. Thus, PA explores the raw frames of the videos in the
row ofmotion and aesthetics, and finds that most of the videos that exhibit better performance exist
in scenarios of significant action changes or lens switching (e.g., Figure 12(c)). He speculates that
these scenarios may reduce the degree of aesthetics, and further bring down the explainability of
the interaction between motion and aesthetics. Thus, he concludes that for videos with significant
action changes, it is suggested to remove the interaction term of the above two terms.
Through further examination of the performance grid view, PA locates several other interesting

and unusual patterns. Regarding the videos used in the SumMe dataset, the removal of the semantic
feature of VVSC degrades the model performance for certain videos (see arrow B in Figure 12(b)).
However, PA originally believes that adding the semantic feature of VVSC should improve the
model performance for most videos. Therefore, PA examines the raw frames of the videos in our
VSumVis system and finds that there exists many scenes switching and screen shaking in these
videos. Thus, he speculates that this situation may lead to the inconsistency between the verbal
and visual features in the VVSC, which further affects the model performance. To address this
situation, he concludes that, for real-world applications, the video summarization methods should
first employ certain traditional computer vision techniques such as frame difference or optical
flow to calculate the significance of scenes switching/screen shaking, and further determine the
inclusion or not of the VVSC feature.
During the interview with the experts, we also collect their feedback, which is summarized as

follows.
Method Design. This method has received positive feedback in expert interviews. They agreed

that this method provides a workflow for video collection analysis and is a good visual analysis
of video content. The proposed system uses computer vision technology to capture video infor-
mation, extract visual and semantic features, and apply saliency models to fit manual annotation.
Finally, the complete process is presented through visual analysis. In the visual analysis system,
they confirmed that the multi-perspective and multi-level coordinated analysis could inspect the
model effect and raw video content. Regarding the methodological recommendations, one expert
added that there are currently fewer features extracted, and to capture more video information and
content, it is possible to add as many features as possible to perform trial and error tests. Regarding
the machine learning model of the application, experts suggest that when the number of features
increases, it is desirable to use a more complex deep learning model due to the sharp increase and
complexity of the data volume, which could make the model more accurate.
Visual Design. All users appreciate our visual analysis system. They believe that the multi-

level (video, event, and frames) visual analysis method has greatly helped them reduce cognitive
pressure in the process of exploring video collections. The professor likes the design of the cluster
very much, he added. “This design is novel and valuable to me. It could dig down into frame-
level information.” The layout based on collision detection algorithms has also been appreciated
by him. Regarding the improvement of visual design, an expert suggested that in the sequential
frames view, showing the ratio of saliency score produced by the model to manual annotation
scores may be more conducive to temporal analysis.
Usability. All the users are convinced by the practicality and effectiveness of the system, and

they all expressed the hope that the system will become public. The professor mentioned that the
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model exploration process from overview to detail is reasonable, and user interaction is smooth and
easy to master. All students appreciate multi-view coordination and multi-level analysis to study
the hidden insights behind the observed differences. With respect to usability improvements, three
students suggested that the system should support the integration of multiple data types, such as
visual representations of other multimodal data like text, images, and audio.

8 DISCUSSION

Our work addresses important challenges in the study of video summarization. While our design
brings togethermulti-feature pattern analysis andmulti-level exploration into an interactive visual
analytics system. The VSumVis system supports a deep analysis of saliency models and manual
annotation video summaries, which is a fundamental work for studying inter-relations of video
summarization and machine learning models.
The effectiveness and flexibility of our system are demonstrated in both machine model diagno-

sis and user guidance. It helps researchers in understanding the applicability of machine learning
models and the effect of each descriptive feature in video summarization. While users are investi-
gating the manifestations underlying descriptive features, they may find some useful insights for
creating new features that are better able to describe a video.
The visual analysis progress that allows interactive exploration of the intrinsic relationship

among saliency models, features, and raw video content would be easily extended to other re-
search topics, especially the research with respect to multimedia visualization. For example, one
could extend our work to audio analysis and further gain additional benefit with partial modifica-
tion on system components.
Domain experts are fully involved in the visual design process, starting from requirement iden-

tification to system evaluation. With the ordinary understanding that the visualization system
should be concise and easy to use, multiple coordinated views are proposed in the VSumVis sys-
tem which makes full use of the screen and allows users to efficiently explore the videos. Though
the system works with fair manifestation and domain experts all agreed on the usefulness of the
visual analysis system, they provided us with suggestions about further improvement of the tool.
One suggestion would be to add a widget that integrates more advanced features that are better
able to allow users to intuitively see and follow the changes. Another one would be to add new
components that allow users to interactively tune parameters.
Scalability. In general, there are two scalability issues. First, there are five features used in our

model; if there are more features, it may limit space of the screen. Too many features often lead to
inevitable display incompleteness. Because we use pixel-based feature visualization, this form of
visualization is essential to alleviate the scalability problem as much as possible, while preserving
useful information. In addition, we plan to explore more interactions, such as paging, sliding, and
so on. Secondly, if the number of single video frames is too large, it may cause visual confusion in
the projection view. Thus, we reduce information redundancy by sampling keyframes, and then
combine with collision detection to achieve an occlusion-free result, hence users could focus on
discovering valuable frames. If the number of these frames is still large, users could also adjust
them through sampling parameters.
Generalizability. Although the goal of our work is to understand the model and analyze the

video collections, it is not limited to the model in our article. It is well-known that a feature-
based model is commonly seen in the machine learning field, we speculate that our visual analysis
method and visualization components could be adapted to other feature-based models. In our de-
sign process, the extracted feature-based visualization tasks could cover a wider range than ordi-
nary systems and guide our design. The three-level analysis (namely, video, event, frame) frame-
work we proposed could be used for similar analysis in other hierarchical model analysis. One

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 4, Article 41. Publication date: June 2021.



VSumVis: Interactive Visual Understanding and Diagnosis of Video Summarization Model 41:25

example is to explore the characteristics and flow of traffic situations. We could extract each road
condition and event (e.g., congestion, unblocked, emergency) from the urban road network, and
extract key features from traffic sections (e.g., human movement, vehicle flow, number of con-
gestion segment, number of traffic lights). These data could be used and represented with some
modification on visualization components in our system. In addition, the projection distribution
of multi-dimensional data is very commonly used in visual design, but visual clutter is a common
challenge in visualization. The rule-based sampling algorithm we proposed provides a feasible so-
lution for relaxing the issue of overlapping nodes. Most of the current sampling algorithms do
not consider realistic constraints for the problems that need to be solved. The sampling algorithm
we proposed is based on multiple conditions, which could be more adaptable to solve problems in
specific situations. At the same time, these rules could be replaced in other fields, but the method
is universal.
Limitation. The limitations of our system remain as follows. (1) Our work relies on the features

extracted in the model analysis step. User intervention in feature extraction will inevitably bring
uncertainty which further leads to analysis biases. Moreover, there always exists a gap between
one’s perception and feature representation. A subtle difference in the feature extraction by dif-
ferent users might yield huge analysis heterogeneity. In addition, the fixed descriptive features
would never be sufficient to represent a video, especially when meeting different research tasks.
A comprehensive feature extraction method based on task requirements would be desirable. (2)
Occlusion still exists in the projection view. A 3-minute video generally contains more than 1,000
frames. Since the projection view covers all frames of the video, there will be too many glyphs
in a limited screen, which inevitably leads to visual clutter. Even though our sampling algorithm
can relax the occlusion problem, there may exist a loss of certain important samples. Designing
a more sophisticated algorithm and supplemented by accurate interaction techniques may pro-
vide a possible solution. In addition, user interaction could help reduce overlaps in the projection
view; however, this issue has not been completely solved. It limits the scalability of our system,
especially working on large videos. An advanced visualization technique may be worth further
investigation to help overcome this issue.

9 CONCLUSION

In this study, we introducedVSumVis, an interactive visual analysis system that helps users explore
the intrinsic relationship among video summarization models, video features, and raw content.
Our system consists of multiple coordinated views (video view, projection view, detailed view,
sequential frames view) and allows multi-level exploration (video, event, and frame level). The
potential for a more effective and efficient investigation of the video summarization model is in-
creased through a synergy between multi-feature examination and multi-level visualization. It is
exploited throughout a well-designed process of visual analysis as well as collaboration with do-
main experts from the computer vision community. Case studies and the presented user study
based on the SumMe dataset and interviews with domain experts demonstrate that our system
could enable efficient and insightful analysis. Our system could benefit those in the visualization
research community by providing a more explainable perspective on the machine learning model
and video analysis.
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