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Abstract—Dimensionality reduction is commonly used for identifying and analyzing patterns in the visual analysis of multi-dimensional

datasets. The selection of subspaces is a core building block in projecting high-dimensional data to low-dimensional space, which is

usually illustrated as a scatterplot for analysts to easily understand and explore. This process involves human prior knowledge and

domain-specific requirements. Thus, quantifying and tracking the changes of dimensionality reduction results across subspaces remain

challenging. Existing methods can neither quantify the subsets-based changes of dimensionality reduction results when switching

subspaces, nor automatically and comprehensively display the overall and subtle differences among dimensionality reduction results.

To address this, we developed EvoSets, a novel visual analytics system designed to help users understand how subspaces affect

dimensionality reduction results. The effects are quantified based on the distribution of subsets within projections to tracking the

sensitivity of dimensionality reduction results across subspaces. In addition, the system supports the exploration of the overall evolution

of the dimensionality reduction results for helping users track the convergence and divergence behavior changes of subsets based on

an extended Bubble Sets visualization. Similarities are intuitively illustrated, and dissimilarities are highlighted among the generated

dimensionality reduction results across subspaces based on different layout constraints. The usefulness and effectiveness of the

system are further evaluated with a user study and two case studies on multi-dimensional datasets.

Index Terms—Subspace, dimensionality reduction result, convergence and divergence behavior changes, comparison

Ç

1 INTRODUCTION

SUBSPACE analysis is often performed before visual explora-
tion for a complex high-dimensional dataset because the

dataset is commonly mapped into an intuitive and easy-to-
understand low-dimensional space according to a specific
subspace for further patterns recognition. Hence, selecting a
reasonable subspace is one of the most common and basic
steps [40] in the process of dimensionality reduction. How-
ever, many aspects must be considered in determining sub-
spaces, such as domain-specific requirements and experts’
knowledge. A plethora of approaches has been proposed to
obtain a particular dimensionality reduction result, such as
automatic subspace analysis [3], projection pursuit [21], and
the clustering method [18]. However, certain significant pat-
terns may be uncovered in different subspaces, certain dis-
cernible patterns may be redundant in all subspaces, and
certain relevant patterns may facilitate pattern identification
in some subspaces. Thus, distinguished subspaces result in
various dimensionality reduction results, where the relative
correlation of data instances changed. For example, tigers
and wolves are similar in terms of carnivory and habitat, but
tigers and cats are more similar than tigers and wolves with

respect to genetic composition and social grouping. Tracking
the grouping changes across subspaces has the potential of
helping domain experts to understand the evolutionary rela-
tionship among species. Thus, analyzing how subspaces
affect dimensionality reduction results has theoretical signif-
icance and is necessary.

The analysis of how subspaces affect dimensionality
reduction results is hindered by three major challenges.
First, the combination of dimensions could increase expo-
nentially with the increasing dimensions, hindering the effi-
cient exploration of high-dimensional data. Thus, visually
comparing all possible subspaces and their dimensionality
reduction results is excessive, and visually recognizing all
possible patterns and filtering redundant patterns are chal-
lenging for users. Automatic approaches were proposed in
previous works to reduce the effort of exploring potential
and reasonable subspaces [3], [35]. However, these methods
or models must often be adapted to domain-specific
requirements. Second, quantifying the changes of dimen-
sionality reduction results across distinguished subspaces is
challenging. Typical point-based approaches were pro-
posed to merely compare the similarities or dissimilarities
on the points’ location in different dimensionality reduction
results. However, these methods do not reveal the correla-
tion changes of subsets within dimensionality reduction
results across subspaces. To efficiently discover and intui-
tively track patterns, such as behavior changes of diver-
gence or convergence among subsets, users must locate and
correlate detailed variations with respect to the structure of
subsets when switching subspaces. Third, the intuitive
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visual design remains a major challenge for tracking the co-
evolution of multiple dimensionality reduction results
across subspaces. In addition, visually ascertaining the simi-
larities and dissimilarities among dimensionality reduction
results is difficult for users. Much research has been
devoted to investigating the evolution visualization of sub-
sets [7], [12], [38]. However, existing methods merely focus
on the presentation of a series of dimensionality reduction
results, and neglect the detailed side-by-side comparison of
subsets [22], [45]. Users need manually compare overall or
subtle differences on dimensionality reduction results.
Therefore, presenting the global evolution of subsets while
preserving local information is also challenging.

To address the issues above, we propose EvoSets, an inter-
active visual analysis system, for revealing how the selection
of subspace influences dimensionality reduction results. For
the first issue, subspaces are generated automatically and/or
manually to decrease the number of subspace explorations.
We also illustrate the characteristic of dimensions by general
statistical approaches to guide users in interactively selecting
dimensions of interest. For the second issue, we propose an
approach to quantifying how dimensionality reduction is
affected by subspaces based on the calculation of the distribu-
tion of subspaces. For the third issue, the EvoSets allows users
to participate in the visual exploration of pattern recognition,
globally and locally. For parsing and illustrating the global
correlation of dimensionality reduction results, we propose
an approach to quantifying the changes of dimensionality
reduction results from the perspective of subsets. We also uti-
lize a matrix chart to visually quantify the correlations among
subspaces and the overall impact of subspaces on dimension-
ality reduction results. For parsing and presenting a local
comparison, we extended Bubble Sets visualization [10] to
express the co-evolution of subsets’ structural changes among
the scatterplots across different subspaces. We also define
three kinds of layout constraints to filter out special points,
considering that the local detail changes are redundant.

In addition, we demonstrate the usefulness and effective-
ness of our methods by conducting two case studies on
commonly used datasets and a user study on visual design
and task analysis. In summary, the key contributions of this
work are as follows.

� We propose a measurement for quantifying how
subspaces affect dimensionality reduction results
based on the distribution of subsets within
dimensionality reduction results.

� We designed EvoSets, a visual analytics system that
aims to identify the correlation of subspaces and
compare their dimensionality reduction results,
globally and locally.

� We provide empirical findings from the dynamic
exploration process of the dimensionality reduction
results based on a user study and two case studies
on real-world datasets.

2 BACKGROUND AND RELATED WORK

This section reviews related works on searching for subspa-
ces, comparison of scatterplots, and visualization of subsets
transition.

2.1 Subspaces Searching

Subspaces play a vital role [49] in the process of dimension-
ality reduction because many visual analysis works on
high-dimensional data are based on projection. Subspace
selection in a large search space is a core building block in
projecting high-dimensional data to low-dimensional space,
which is susceptible to human prior knowledge and task
requirements. Among of the issues, scalability is a key chal-
lenge in dealing with high-dimensional data in subspace
projections. For a dataset with d dimensions, the number of
possible subspaces could be 2d�1, which impose a heavy
cognitive load on analysts.

Exploring all subspaces is unnecessary for identifying
patterns because some subspaces may contain redundant
patterns. Therefore, many researchers have made some con-
tributions to filtering valid and significant subspaces by effi-
ciently comparing or ranking dimensionality reduction
results, such as automatic subspace analysis [11], [44], projec-
tion pursuit [21], [26], or clustering method [27], [34], [45].
Automatic subspace analysis [2], [43], [51] decreases the
number of subspace explorations by measuring the indica-
tors of subspaces, such as interestingness, importance, and
entropy. Projection pursuit approaches [2], [26] aim to find
significant projections of high-dimensional datasets. Cluster-
ing approaches [3], [23] seek to identify clusters among vari-
ous subspaceswithin a dataset-based clustering algorithm.

Considering that the above approaches may miss some
significant subspaces of user interest, some studies focused
on constructing and refining multi-dimensional subspaces.
They leveraged interactive technology [33], [35] to filter sub-
spaces [39] to decrease the cost of searching subspaces.
Users could control the output of a subspace by adding or
removing attributes. Guo et al. [17] and May et al. [30]
helped analysts select interesting feature dimensions by
interacting with the algorithm outputs. Krause et al. [24]
proposed SeekAView, a transparent and flexible process-
oriented approach that helps analysts build subspaces out
of a high-dimensional dataset. P�erez et al. [35] provided
users with more control over the process, including the
weight strength and the feature extension. Paiva et al. [33]
proposed an interactive projection technique that allows
users to perfect the dimensionality reduction results by inte-
grating their prior knowledge. Analysts can gradually
improve the visual quality of the projection by manually
making the objects in the same cluster nearer or separating
non-components. However, the obtain satisfying results
through the process may be tedious. In addition, these
methods neglect the detailed side-by-side comparison of
subspaces, which might make results difficult to interpret.

2.2 Projection Comparison

Researchers have proposed several techniques [6], [29], [48]
to project a high-dimensional dataset into low-dimensional
space, which is usually visualized as a two-dimensional
scatterplot for analysts to easily understand and explore.
However, the dimensionality reduction results generated
by various subspaces have dissimilarities, which reflect
how subspaces affect dimensionality reduction results. This
subsection mainly introduces approaches to identifying
these characteristics of multiple scatterplots.
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The goal of most research on projection is finding high-
quality dimensionality reduction results for visual explora-
tion by comparing dimensionality reduction results [5],
[25], [46]. Researchers have compared, quantified, and
ranked scatterplots with some considerations such as the
tightness within the cluster, the separation among clusters,
and visual clutter [13], [15]. Sips et al. [41] qualified and
compared different scatterplots in terms of distance and dis-
tribution consistency for the selection of high-quality projec-
tion. Schaefer et al. [40] integrated the quality measure of a
given embedding based on structural preservation and
visual clutter avoidance. Andrada et al. [43] presented the
assessment of density and separateness for clusters in the
distribution of unclassed and classed data. Some research-
ers [32], [42] leveraged the statistical information of scatter-
plots to compare groups within projections.

Some researchers also investigated the correlation of
dimensionality reduction results by calculating dissimilar-
ities [14] or similarities [22], [28] among scatterplots with
defining layout algorithms or constraints [8]. For differnces-
based computation of dimensionality reduction results,
Dirk et al. [26] presented dissimilarity-based measurement
by discarding affine transforms of projections and prevent-
ing redundancies of the same data patterns. Fujiwara et al.
[14] proposed an automatic tracking approach, which can
help analysts follow the common changes, such as the ani-
mated transitions of outliers and the newly forming cluster.
For similarities-based computation of dimensionality reduc-
tion results, Wang et al. [45] utilized matrix visualization to
illustrate dimensionality reduction results, and pixel-wise
mean square error to quantify the similarity between two
dimensionality reduction results. They also cluster and

construct a hierarchical tree for efficiently selecting and
comparing topological similarity in the matrix views based
on Tanimoto distance. Jackle et al. [22] described a method
for transforming point-based distance matrices to 1D fea-
ture vectors for computing a similarity between two sub-
space projections. Ma et al. [28] introduced a deep-learning-
based approach for characterizing perceptual similarities
among ScatterNets.

However, these methods do not automatically quantify
how subspaces affect dimensionality reduction results, how
subspaces affect the structure of subsets, and how to visual-
ize the detailed correlation changes among data instances.
In this work, we quantify how dimensionality reduction
results change across subspaces, visualize the divergence
and convergence behavior changes of subsets, and reveal
the detailed changes of data records across subspaces with
three kinds of layout constraints. Thus, users can compre-
hensively obtain the co-evolution of dimensionality reduc-
tion results across subspaces globally and locally.

2.3 Subsets Transition Visualization

This work includes revealing the co-evolution of subsets in
different projections. We define this co-evolution of subsets
in subspaces as subsets transition. This section reviews
related works on the transition visualization of subsets.

For the visualization of various subsets in one set, Dinkla
et al. [1] presented Kelp Diagrams, a novel method for
depicting set relations over points. The algorithm considers
the aspects of aesthetic standards and efficiency and balan-
ces visual complexity from the data. Meulemans et al. [31]
proposed KelpFusion, which uses the shortest path diagram

Fig. 1. EvoSets: The user interface starts with dimensions combination view (A), which illustrates characteristics of dimensions. The matrix-based
correlation view (B), which allows users to identify the similarity among projections across various projections. The projections subtraction view (C),
which assists analysts to efficiently identify the subtle information. The evo-subsets view with extended Bubble Sets visualization (D), which intuitively
tracks the co-evolution of significant subsets.
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to define the linear characteristics of the visualization and
integrates hull and line-based technologies to visualize col-
lection members. All these methods can distinguish differ-
ent subsets and perform well in scenarios of accuracy, time
complexity, and adaptation. However, expressing the struc-
tural state of the set is challenging, especially the conver-
gence and divergence in our research.

On the basis of the idea of tracking a single record over
time and visualizing the changes of such single records in
the projections, some approaches have been proposed in
recent years [4], [20], [47]. Yuan et al. [50] presented two
kinds of visual approaches, namely, “Dimension Projection
Matrix” and “Dimension Projection Tree”, which are
designed for visually exploring high-dimensional data corre-
lation and attributes correlation. Liu et al. [27] introduced the
transition graph of dynamic projections to navigating explo-
ration of dimensionality reduction results. Wang et al. [45]
utilized multiple matrix visualization to track the relative
distance changes of data items. However, matrix visualiza-
tion can not intuitively illustrate the cluster information.
J€ackle et al. [22] proposed Pattern Trails, shown in Fig. 2A, to
visualize projections of subspaces side-by-side and indicate
changes among adjacent patterns in subspaces through
linked representation. Poco et al. [36] leveraged enclosed sur-
faces to visualize 3D projections, which illustrate the geomet-
rical information derived from clusters. However, these
works only focused on the visual presentation among sub-
sets and did not quantify how “changeable” these
dimensionality reduction results are. Thus, we propose a lay-
out algorithm based on the distribution of subsets for auto-
matically revealing the convergence or divergence behavior
changes. We also present extended Bubble Sets visualiza-
tion [10] for tracking these changes. Compared with Pattern
Trails in Fig. 2A, the proposed visualization of Bubble Sets in
Fig. 2B could not only distinguish different subsets in a spe-
cific projection result, but also help express the convergence
or divergence behavior of subsets among different results.

3 TASK ANALYSIS AND WORKFLOW

This section describes user tasks after our literature review
that has discussed above. We survey the relevant works on

subspace searching and projection comparison and provide
summary of these researches in Fig. 4. We also introduce
the workflow of exploring the impact of subspaces on
dimensionality reduction results.

3.1 Task Analysis

We aim to automatically ascertain the changes of multiple
dimensionality reduction results across subspaces. To help
users understand how subspaces affect dimensionality
reduction results, we summarized the following core analysis
tasks that appearmost frequently in the domain literature.

T1 Supporting interactive subspaces generation. The design
must guide users in creating random subspaces.
Automatic approaches to subspaces generation may
lead to the loss of certain significant subspaces.
Therefore, considering that subspaces are combined
with dimensions, the characteristics of dimensions
must be visualized to guide users in interactively
generating subspaces.

T2 Summarizing overall changes of dimensionality reduction
results globally. The design must provide a compact
visual summary of the projections’ transition. An
automatic approach is proposed to quantify the
changes of dimensionality reduction results based
on the distribution of subsets. Considering that the
information is directed correlation and we must
illustrate the transition of projections, we employ a
matrix chart to visually summarize the overall
changes of the scatterplots across subspaces.

T3 Providing a visual metaphor of subsets’ convergence and
divergence behavior changes. The design The design is
required to efficiently distinguish various subsets
and intuitively interpret the subsets’ divergence or
convergence behavior changes. Dimensionality
reduction results inevitably appear in groups, which
may exhibit changes in group members across differ-
ent subspaces. The visual encoding of convergence
and divergence patterns is motivated by Bubble Sets
visualization in which the former occurs when two
or more subsets merge into a subset and the latter
occurs when a subset spread into two or more sub-
sets. This visual metaphor of bubble subsets allows
us to highlight significant information where subsets
converge to similarity or diverge from similarity.

T4 Relaxing visual clutter. The design must provide an
intuitive and pleasing visualization of the co-evolu-
tion of the structural changes of subsets. The cross-
ing and overlapping of bubble subsets may create
visual clutter, which can hinder users from exploring
and investigating pattern recognition. The visualiza-
tion of bubble subsets should be extended to relax
visual clutter.

T5 Highlighting and unfolding differences between dimen-
sionality reduction results locally. The design must
allow a user to compare dimensionality reduction
results in detail. Considering that visualizing all dif-
ferences may increase the burden on users and block
the exploration and identification of significant pat-
terns, we defined specific layout constraints (i.e.,

Fig. 2. High-dimensional dataset is projected into scatterplots and the
group correlation have been changed across three subspaces. The tran-
sitions of structural changes are depicted using two visual approaches.
J€ackle et al. [22] leveraged lines to connect and track data instances of
selected subsets (A), Our proposed visual analysis method utilizes Bub-
ble Sets visualization to wrap the subset, which has been evaluated an
effective approaches [10] to maximally distinguish subsets, and it also
express subsets’ convergence or divergence behavior changes (B).
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distance, angle, and cluster constraints) to quickly
find notable data instances.

These requirements help us obtain appropriate design
principles and make informed decisions about our visual
design.

3.2 Analysis Workflow

The analysis workflow of our proposed system is shown in
Fig. 3. First, the workflow starts from the general statistical
analysis of dimensions for illustrating the characteristics of
dimensions, which guide users in implementing dimen-
sions combination to generate dimensionality reduction
results (A). Second, the effects of subspaces on dimensional-
ity reduction results globally (B) and locally (C) are
revealed. For parsing global information, we ascertain the
convergence or divergence behavior changes of subsets
based on the distribution of subsets. For parsing local infor-
mation, we identify the detailed changes between projec-
tions with three kinds of layout constraints. Third, for

tracking the transition of dimensionality reduction results
across distinguished subspaces, we extended Bubble Sets
visualization (D) and defined difference-based comparison
to visually display the changes of projections from different
perspectives, the overall correlation of different projections
(E1), and the tracking of the subsets’ co-evolution within
projections (E2), and highlight the data points of notable
changes (E3).

4 MEASURING CHANGES

Our goal is to track the co-evolution of multiple dimension-
ality reduction results globally and uncover the detailed
changes between dimensionality reduction results locally.

4.1 Projections Quantification

To illustrate the impact of subspaces on the dimensionality
reduction results, we evaluate a single projection and calcu-
late the changes among multi-dimensional reduction results
across various subspaces. For the former, we employ a pro-
jection assessment approach [41], which leverages the dis-
tance consistency (DC) and distribution consistency (DSC)
of scatterplots to quantify the dimensionality reduction
results. For the latter, we introduce an approach to measur-
ing the changes of dimensionality reduction results across
various subspaces based on the distribution of subsets.

Data Space and Subsets Definition. Let X � Rd be a dataset
with d dimensions. Datasets are divided into m subsets
under certain subspace CðXÞ ¼ c1; c2; c3; . . . ; cmf g, while ci
denotes a subset.

Measuring the Changes AmongMultiple Projections.Qualita-
tive or quantitative measurement is complicated and redun-
dant when measuring the dissimilarities of dimensionality
reduction results from the perspective of data points.
Because the changes of projections include not only the posi-
tion and the direction, but also the shifting of different clas-
ses, which complicates the measurement of the changes of
dimensionality reduction results. Speak more specifically, a
scatterplot is composed of a series of subsets whose behavior

Fig. 4. Task analysis. FCS represents the free creation of subspaces.
IGC signifies the identification of global changes on projections. SC and
CC denote similarity-based computation and changes-based computa-
tion of projections respectively. PC and DC denote point-based computa-
tion and subsets-based computation of changes on projections
respectively. VDM describes the visual design metaphor. RVC serves for
visual clutter relaxing. ILC depicts the identification of local changes on
projections. @ depicts the existence of a certain function, and - depicts
the (possible) absence of a certain function.

Fig. 3. The explanation pipeline can be divided into the following steps: Dimensions statistics and subspaces generation automatically or manually for
creating dimensionality reduction results (A). Ascertaining subsets’ behavior changes of convergence or divergence based on the distribution of sub-
sets across various subspaces (B). Comparison of two projections with geometric transformation (C). Extended Bubble Sets visualization for quickly
distinguishing subsets, recognizing subsets’ behavior changes, and maintaining group correlations of data points (D). Visualization of comparison
globally and locally (E1, E2, E3). Overall correlation among different dimensionality reduction results (E1). Tracking of the co-evolution of subsets
within dimensionality reduction results (E2). Highlighting of notable data points with tree kinds of layout constraints (E3).
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changes reflect the correlations of the inner members within
subsets. These structure changes on scatterplots indicate
how subspaces affect dimensionality reduction results.
Therefore, we quantify the evolution of dimensionality
reduction results across various subspaces from the perspec-
tive of the distribution of subsets, rather than data points.

Fig. 5 illustrates the process of qualifying the structural
changes of dimensionality reduction results. First, three pro-
jections (i.e., A, B, and C) are generated with three subspa-
ces, respectively. The dimensionality reduction results are
automatically grouped after applying the cluster algorithm.
The correlation of members within scatterplots are changed
across different subspaces (such as a1; b1f g, a2; b2; c2f g, and
a3; b3f g). Second, the inner members’ group labels of subsets

are changed, forming the co-evolution of the subsets across
subspaces, and sumðci \ cjÞ denotes the number of items
that subset ci and subset cj share. Let cði;jÞ be the distribution
of ci across cj, which also presents the similarity of two sub-
sets because the higher the ratio of the same elements in
two subsets is, the greater the value will be.

cði;jÞ ¼ 1� sumðci \ cjÞ=sumðciÞ: (1)

Third, to obtain all subsets’ distribution, MðPi; PjÞ is
defined as the changes between projection Pi and Pj. This
matrix summarizes the convergence and divergence behav-
ior changes based on the distribution of subsets within one
projection Pi (n + 1 clusters are identified) on another pro-
jection Pj (m + 1 clusters are identified). The sum of each
row equals to 1. In addition, the first row of this matrix rep-
resents the transition of the first subset in Pi across each of
the m subsets in Pj.

MðPi; PjÞ ¼

cð0;0Þ cð0;1Þ . . . cð0;mÞ
cð1;0Þ cð1;1Þ . . . cð1;mÞ
..
. ..

. . .
. ..

.

cðn;0Þ cðn;1Þ . . . cðn;mÞ

2
6664

3
7775: (2)

Finally, to quantify this transition of dimensionality reduc-
tion results, we further obtain the statistics of matrix
MðPi; PjÞ to express the changes between two projections
better as follows.

DðPi; PjÞ ¼ 1

n

Xn

k¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
p¼0 jcðk;pÞ � cðkÞj

m� 1

s
;m > 1; (3)

where cðk;pÞ is in the k-th row and p-th colum of MðPi; PjÞ
when cðkÞ is the average of all values of the k-th row of
MðPi; PjÞ. A low DðPi; PjÞ value indicates that the behavior

tends to be divergent from convergent when the subsets
within projection Pi are dispersed into other subsets within
projection Pj, and vice versa.

Furthermore, evolution matrix Evo is generated after
all projection changes are computed. Evo indicates the co-
evolution of dimensionality reduction results across various
subspaces.

Evo ¼

DðP0;P0Þ DðP0;P1Þ . . . DðP0;PnÞ
DðP1;P0Þ DðP1;P1Þ . . . DðP1;PnÞ

..

. ..
. . .

. ..
.

DðPm;P0Þ DðPm;P1Þ . . . DðPm;PnÞ

2
6664

3
7775: (4)

4.2 Projections Subtraction

Selecting interesting subspaces and carefully observing the
subtle differences among each cluster are usually time-con-
suming and inefficient when we must focus on the detailed
changes. In this work, we defined the following three kinds
of layout constraints to assist users in finding key informa-
tion from subtle transitions locally and efficiently (T5).

� Distance Constraint. When switching subspaces, the
dimensionality reduction results will cause the data
point location changes. We define points that beyond
the distance threshold as distinctive points. As
shown in Fig. 6, the change of distance is out of the
threshold d) from point a within projection 1 to a

0

within projection 2. Thus, we consider this data
record as a potential special point. In addition, decid-
ing on threshold d is challenging. Thus, we provide
users dynamic d by interactively deciding the
parameter of the quantile statistical approach. We
also leverage the common parameters as default
(quartile) to automatically detect the threshold and
visually highlight the outliers, which help users in
efficiently identifying the abnormalities.

� Cluster Constraint. The dimensionality reduction
results may result in changes in the points’ group
labels with the subspace changes. We define these
points as distinguished data points. As shown in
Fig. 6, the group label of point b changed from point
b of the blue subset within projection 1 to point b

0
of

the green subset within projection 2. In addition, we
use the clustering algorithm to detect groups and
then automatically identify the point whose group
label changes by matching the group labels. Finally,
our system visually highlights these special points.

Fig. 5. Illustration of the identifying the subsets’ behavior changes of
convergence or divergence based on the distribution of subsets to reveal
evolution of projections across subspaces.

Fig. 6. The differences identification between Projection 1 and Projec-
tion 2. Abnormal points are highlighted with constraints, such as dis-
tance constraint( from point a to point a

0
), clustering constraint( from

point b to point b
0
), and angle constraint( from point c to point b

0
).
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� Angle Constraint. The dimensionality reduction res-
ults will cause the offset of data points with the
transforming subspace. We define the points beyond
the angle threshold as notable points. As shown in
Fig. 6, the change in angle is out of the c threshold u)
from a point within projection 1 to c

0
within projec-

tion 2. Thus, we consider this data entry as a poten-
tial special point. In addition, deciding the value of u
is challenging. We utilize the quantile statistical
approach to providing a dynamic u to automatically
identify and visually highlight point outliers.

Based on above considerations, we provide a superposi-
tion design [15] to present a detailed comparison of two pro-
jections encoded by distinguished colors shown in Fig. 1C.
All special points are highlighted and connected with lines to
present the changes (distance outliers with pink lines, angle
outlierswith blue lines, the group changingswith green lines,
and hybrid with red lines), while other points are visualized
with low saturation color and act as the context.

5 VISUALIZATION DESIGN

This section describes the details of each visual component,
visual mapping, and supported interactions. Fig. 1 shows the
user interface that has fourmajor components: the dimensions
statistic panel (Fig. 1A) for showing the characteristics of each
dimension, the correlation panel(Fig. 1B) for displaying an
overviewof the co-evolution amongdimensionality reduction
results, the projection subtraction panel (Fig. 1C) for illustrat-
ing the subtle changes in projections, and the evo-subsets
view (Fig. 1D) for presenting the subsets’ divergence or con-
vergence behavior changes across subspaces.

5.1 Subspace Visualization

Dimensions Characteristics. The dimensions of a raw dataset
usually suffer from a lack of interpretability, especially for
users without prior knowledge. Thus, the characteristics of
dimensions must be presented to provide users a prelimi-
nary understanding of dimensions and guidance in combin-
ing dimensions. In Fig. 7A, the dimensions are encoded by
the color of small multiple boxplots to visualize the outliers
after general interquartile statistical analysis. In addition, a
parallel coordinate plot is employed to illustrate the overall
trend of the raw data.

Dimensions Combination. A combination of various
dimensions forms a subspace. Except for the scenario where
one subspace contains one dimension, the number of

possible subspaces is 2n-1-n, where n is the number of
attributes. If each dimension is further equipped with vari-
ous weights, the number of subspaces tends to infinity, pre-
senting a major challenge in data exploration. Existing
works present automatic approaches to reducing the effort
of exploring potential and reasonable subspaces. However,
problems remain, such as missing significant attributes that
are of interest to users. Thus, our system supports users in
creating subspaces automatically and/or interactively(T1).

First, we employ SURFING algorithm [3] and also pro-
vide the function of automatically generating subspaces to
minimize the burden caused by subspace exploration con-
sidering many subspaces, while being able to explore all the
attributes. Second, users can interactively adjust the weight
(w) of each dimension, which implies that users could put
emphasis on dimensions during analysis. If the weight (w)
of a dimension is set to zero, then this dimension does not
play any role in dimensionality reduction results because
the dissimilarities of all data records are zero under this
dimension. As shown in Fig. 7B, each color block acts as a
visual metaphor of a dimension, the radius of these color
pixels encodes the weight of dimensions, and the subspaces
are encoded with the combination of the weighted-color
blocks. Therefore, the amount of change in the dimensional-
ity reduction results could directly indicate the influence of
the added, removed, or replaced dimensions on the
dimensionality reduction result. On the basis of certain
selected subspaces, the high-dimensional dataset is pro-
jected into low-dimensional space, which is commonly visu-
alized as scatterplots.

Subsets Visualization.Our work is designed for comparing
the changes between dimensionality reduction results,
which involves subsets visualization. First, to preserve the
relative correlation among data instances, we apply the
common dimensionality reduction technique [6] to project a
multi-dimensional dataset as a scatterplot. We utilize the
Birch algorithm to automatically identify groups. As shown
in Fig. 1D, each scatterplot represents a selection of specific
dimensions, and the color encodes the clustering category
of each point. Second, the visualization must maintaining
the viewer’s mental map and distinguishing various sub-
sets. Many studies on maintaining the users’ mental map
have been conducted [9], [14], [16], [37]. In Fig. 8B, we

Fig. 7. Dimensions visualization with small multiple boxplots for illustrat-
ing the characteristics of dimensions (A). Subspaces visualization with
combined weighted-color blocks, in which each color block represents
an individual dimension and the radius of color blocks encode the weight
of dimensions (B).

Fig. 8. Original dimensionality reduction results across various subspa-
ces (A). Projections with geometric transformation (B). Subsets visuali-
zation after applying the extended Bubble Sets visualization (C).
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leverage the Procrustes transformation [14], [16] to solve
flipping and arbitrary rotation issues, Third, We employ
extended Bubble Sets visualization. Along with the switching
of subspaces, the distribution of subsets in the scatterplots
indicates the subsets’ convergence and divergence behavior
changes. Furthermore, as the subspaces increase, identify-
ing the convergence and divergence behavior among the
small multiples of scatterplots quickly is another challenge.
To address these issues, we extend Bubble Sets-based algo-
rithm to relax the visual clutter, strengthen the correlations
of members in subsets, and highlight subsets’ behavior
changes. As shown in Fig. 8C, each cluster is encircled by a
bubble to highlight the corresponding points’ locations, and
same clusters in various projections are circled by the same
color bubble.

Subspace Correlation. We must visually summarize how
subspaces affect dimensionality reduction results (T2), as
interpreted by Equation (4). Our goal is to track the co-evo-
lution of dimensionality reduction results across subspaces,
and Equation (4) expresses the directed correlation informa-
tion. Thus, we leverage a circle-based matrix diagram to
illustrate the differences on dimensionality reduction
results, as shown in Fig. 1B. The radius of one blue circle
encodes the changes of two dimensionality reduction
results. The radius of one red circle represents the stability
of dissimilarity in one row of dimensionality reduction
results. In this paper, the degree of dissimilarity is obtained
by measuring the variance of the repeatability among sub-
sets. A large radius indicates that the two dimensionality
reduction results are more different across subspaces and
vice versa. In addition, the sequence of the left and top color
blocks in Fig. 1B represents the selected dimensions. The
histogram at the right part of Fig. 1B shows DSC and DC to
help users comprehensively understand the quantity of
dimensionality reduction results.

5.2 Extended Bubble Sets Visualization

Subsets visualization aims to quickly distinguish subsets
and determine the distribution of subsets. In this section,
we describe our extended Bubble Sets visualization (T4),
which is designed to relax visual clutter by enlarging the
high-density area or decreasing the edge-crossing area.

Reallocate Intersecting Regions. To relax the visual clutter in
the proposed visualization, researchers usually aim to mini-
mize the intersection area through various optimization
techniques. However, in some cases, such as the overlapping
of various intertwined sets as shown by the pink bubble in
Fig. 9a, minimizing the intersection area may increase the
number of interactions among all the sets. Furthermore, cou-
pledwith the repeating overlay of the semitransparent colors
that represent different subsets, the overall visualization
tends to have more visual clutter. Thus, we extend the origi-
nal Bubble Sets visualization [10] to satisfy our requirement.
Themain idea of the original Bubble Sets algorithm is to intro-
duce an importance value, which is computed by the
“energy” function for each grid cell, in the corresponding
sets. After calculating the potential energy values (EðpÞ) for
all pixels, virtual lines are applied to connect the elements to
ensure that all set members are connected and contained and
the items that are not in the set would be excluded.

The idea of our extended algorithm is to increase the
overlapping high-density area to relax the visual clutter.
Fig. 9A illustrates the process of optimizing the overlapping
area. First, we execute the clustering algorithm to identify
the areas where severe intersections may occur. If the num-
ber of sets in the identified area is larger than or equal to
threshold t and the number of points in one set is much
larger than those in other sets, then our algorithm would
optimize this area (denoted as Ei, which contains sets
S1; S2; . . . ; Sk) by automatically determining the energy
function as follows. Second, considering that enlarging the
area may mislead users of the number of subsets, our equa-
tion must ensure that the relative area of subsets visualiza-
tion is consistent with the number of points within the
subsets. We increase the area of some part of subset Smax in
certain area Ei to relax the visual clutter to some extent.

EðpÞ ¼
X

i2Spixel
wiðR1 � distancei;pixelÞ2=ðR1 �R0Þ2 (5)

wi ¼

NðSkÞP
k2Ei

NðSkÞ
8i 62 Smax ; i 2 Ei ; Smax � Ei

1þ ln

P
k2Ei

NðSkÞ
NðSkÞ 8i 2 Smax ; i 2 Ei Smax � Ei

1 i 62 Ei

8>>>>><
>>>>>:

;

(6)

where distancei;pixel represents the euclidean distance to the
nearest point on the shape surface, and the values are zero
if a pixel is within the corresponding shape. NðSkÞ is the
number of points in set k, and Smax denotes the biggest set
in region Ei. R0 is the distance at which the energy is 1, and
R1 is the distance at which the energy reaches 0. Spixel is the
set of influencing points within R1 of the pixel. Algorithm 1
summarizes the process of optimizing the overlapping area
to relax the visual clutter.

Alleviate Edge Crossings Impact. In the original Bubble Sets
algorithm, virtual edges are created to ensure continuity and
accuracy among the subsets. Thus, edge-crossings are often
unavoidable even if the detour of the virtual edges success-
fully diminishes the crossings among bubble subsets.

Another idea of our extended algorithm is to decrease the
area of edge-crossing to relax the visual clutter. Fig. 9B illus-
trates the process of optimizing the crossing area. First, to
ensure that the crossings area of the edges is as small as pos-
sible, the intersection among edges should form large angles

Fig. 9. Extended Bubble Sets visualization. The enlarged area of overlap
may relax visual clutter (A). Initial visualization of subets (a), results after
applying the extended Bubble Sets (b). Changing the crossing angle
could improve legibility (B).
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(e.g., the edges that intersect vertically in Fig. 9B). This
could help minimize the area of overlap between the two
edges and help enhance the visual continuity of each set
itself. We take the intersection of two virtual edges as the
center point and add two virtual points on both sides of the
virtual edge and then adjust the energy contribution of the
two points to be equal to one of the virtual edges.

Algorithm 1. Algorithm of Extended Bubble Sets

Require: P is a node set and S1; . . . ; Sk are subsets of P
Ensure: An extended Bubble Sets visualization for S1; . . . ; Sk

1: Perform the DBScan algorithm, and obtain the top hot area
EðE1, E2; . . . ; EiÞ

2: for each Ei 2 E do
3: Count the number of points for each subsetsNðSkÞ in Ei

4: Determine the largest subsets Smax in E
5: Add nodes that are both in Smax and Ei to M, add

remaining nodes to N
6: for each item 2 M do
7: Increase the energy of nodes by increasing the wi of

item
8: end for
9: for each item 2 N do
10: Decrease the energy of nodes by decreasing the wi of

item
11: end for
12: end for
13: return Visualization results V1; . . . ; Vk for S1; . . . ; Sk

5.3 Visual Metaphor of Behavior Changes

The behavior changes of subsets reflect the correlation
changes of the members within subsets. The subsets visuali-
zation based on the extended Bubble Sets visualization could
not only help distinguish subsets with different colors, but
also provide an intuitive perception of the subsets’ conver-
gence or divergence behaviors. Therefore, the visual encod-
ing of the subsets’ behavior changes (T3) could be
categorized into the following four kinds.

Divergence to Divergence (B1).Multiple subsets are distrib-
uted to various subsets across certain subspaces. The behav-

ior of this subset tends to be static, indicating
that the added or removed attributes do not
increase the similarity of the subsets. The
replaced attributes do not strengthen the cor-
relation of these confused members. The

remaining attributes share information. Thus, the changed
attributes within subspaces play a non-dominant role in the
dimensionality reduction results. Otherwise, the coupling
phenomenon may exist among the changed attributes.

Divergence to Convergence (B2). Multiple subsets are
merged into a single subset across another subspace. The
behavior of this subset tends to be dynamic, indicating that
the added or removed attributes reinforce the similarity of

the subsets. The replaced attributes strengthen
the members of multiple subsets to be one
group, and the remaining attributes share infor-
mation. Thus, the dimensionality reduction
results are sensitive to the changed attributes,

which play a non-dominant role in the dimensionality
reduction results.

Convergence to Divergence (B3). One subset is divided into
multiple subsets across certain subspaces. The behavior of
this subset tends to be dynamic, indicating that
the added or removed attributes decrease the
dissimilarity of subsets. The replaced attributes
strengthen the members of one group to be mul-
tiple subsets, and the remaining attributes share informa-
tion. Thus, the changed attributes may play a domain role
in the dimensionality reduction results.
Convergence to Convergence (B4). One subset is still grouped
across certain subspaces. The behavior of this subset tends
to be static, indicating that the added or removed attributes
decrease the similarity of the subsets. The
replaced attributes strengthen the correlation of
the members of one group, and the remaining
attributes share information. Thus, the changed
attributes may play a non-dominant role in the dimension-
ality reduction results. Otherwise, the coupling phenome-
non may exist among the changed attributes.

The subsets’ behavior tends to be static in B1 and B4,
which means that the elements within the subset remains
similar across two subspaces. Therefore, the subspaces have
no or few influences on the dimensionality reduction
results. The subsets in B2 and B3 changed, indicating that
the correlation of elements within the subsets changed
across two subspaces. Therefore, the subspaces have a sig-
nificant influence on the dimensionality reduction results.
Given that a subspace is composed of a series of dimen-
sions, we can infer that dimension d is the domain dimen-
sion. We summarize the characteristics of domain
dimensions d as follows:

� Scenario 1. If the subspace does not contain dimen-
sion d, then the generated dimensional reduction
result tends to be mutable.

� Scenario 2. If the subspace contains dimension d, then
the generated dimensional reduction result tends to
be stable.

5.4 User Interactions

EvoSets supports various basic and advanced interactions,
including multiple view linking and brushing, to address
analytical tasks.

Show Overall Projections First, Followed by Detailed Distri-
bution on Demand. EvoSets presents a visual summary of all
the projections generated by different subspaces and their
difference. Users can examine the overall projections to
locate ones of interest (T2) and perform subsequent explora-
tion tasks, such as projection subtraction. In addition, our
system also supports various projections techniques, such
as PCA and MDS, and various clustering algorithms, such
as K-Means, DBScan, and Birch (T3). Users could freely
explore the detailed information based on the above
options.

Guidance-Based Subspace Selection. A feature guidance
view (T1) could not only offer a summarization of all
dimensions, but also allows users to combine subspace of
interest. Fig. 1 A shows an example of guidance-based sub-
space selection. Users could click on dimension buttons to
determine which one to select, and the corresponding
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projection appears along with the selection to provide
timely feedback.

Abnormal Items Identification. A user may want to com-
pare two specific views and examine the difference between
them in detail to identify abnormal items (T5). Our system
could highlight items based on distance, angle, and cluster-
ing constraints through abnormality threshold control using
a sliding bar.

Tracking Specific Subsets.We utilize the lasso technique on
the scatterplots under subspaces. Users can draw an arbi-
trary shape on one scatter chart with the mouse. Then, the
extended Bubble Sets visualization is applied to the subset to
show the behavior changes of the subsets in different
subspaces.

Reordering Multiple Scatterplots. To help users follow the
behavior changes of the subsets when tracking their co-evo-
lution across different subspaces, the system supports reor-
dering projections by dragging projections, which places
similar projections near each other for users to easily
compare.

6 CASE STUDY

We first employ EvoSets to a well-known Forest Fires data-
set and discuss our findings in comparison with those using
Pattern Trails [22]. Then, we apply our system to the vehicle
dataset and employ our analysis workflow to find dominant
dimensions or subspaces.

6.1 Patterns Finding

The first dataset is a common Forest Fire dataset, which
comprises of seven numerical attributes: Fine Fuel Moisture
Code (FFMC), Duff Moisture Code (DMC), Drought Code
(DRC), Initial Spread Index (ISI), Temperature (temp), Relative
Humidity (RH),Wind, and Rain.

Analysis of Forest Fires Dataset. Our goal is to find the
domain attributes on the dimensionality reduction results.
First, We qualitatively analyze each attribute of the dataset
by specifically combining attributes. The first subspace is
composed of all the attributes, and then one attribute is
removed iteratively. These combinations of subspaces can
be analyzed to reveal the contribution of individual attrib-
utes to the dimensionality reduction results.

Second, we obtain multiple dimensionality reduction
results, in which we can draw any enclosed shape in a cer-
tain dimensionality reduction result to track the behavior
changes of subsets in other dimensionality reduction
results. As shown in the left part of Fig. 11, we find that the
state of the subset in the three figures with black arrows is
different from the other projections. For example, the state
of the subset wrapped in red bubbles has three divergence
and six convergence patterns. In addition, the red and blue
subsets are close, indicating that they are more similar than
the other dimensionality reduction results. The matrix dia-
gram on the right shows that the dimensions of DRC and
RH are removed in these three figures with black arrows.
Therefore,DRC and RHmay play a key role in dimensional-
ity reduction.

Comparison With Pattern Trails. We investigate the
changes of dimensionality reduction results across subspa-
ces globally and locally. To demonstrate that our approach
performs better than Pattern Trails in exploring the differen-
ces. We leverage 24 subspaces in Pattern Trails to obtain two
dozens of dimensionality reduction results.

Globally, the bar chart in Fig. 10A, shows that the metrics
(DSC and DC) of each group are similar from points a to b
in the gray box. The corresponding radius of the circle in
blue box is small, indicating that these subspaces have a
great effect on the dimensionality reduction results in which
the changes are not quantified, and users must manually
compare the changes among subspaces in Pattern Trails. In
addition, shown in Fig. 10B shows that compared with the
behavior of the subsets within projections in the first row,
the behavior of the three subsets (i.e., golden, blue, and pur-
ple) are all convergent within the dimensionality reduction
results in the second row. Locally, several subspace-pairs
are similar, such as the dimensionality reduction results in
the blue box in Fig. 10B. To further explore the detailed dif-
ferences, we click the corresponding dimensionality reduc-
tion results. In Fig. 10C, we detect one special data record
with a red line whose location offset changed the most. By
clicking this point, the parallel coordinate chart shows that
it is an outlier in dimension Rain in Fig. 1. The comparison
of the two subspaces shows that only the results of attribute
Rain changed in the notable location offset.

Overall, we identify that the attribute with obvious
groups may be the dominant attribute after exploring the

Fig. 10. Correlation of twenty-four subspaces generated in Pattern Trails after applying the SURFING algorithm (A). Co-evolution of subsets’ behav-
ior changes of convergence or divergence (B). Detailed differences identification of two projections with the layout constraints, where the special tran-
sition of points is highlighted with bright lines (C).
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distribution of attributes, such as the attribute of DRC
whose distribution shows more than two clusters. In addi-
tion, compared with Pattern Trails, our approach could not
only quickly observe the correlations among subspaces and
track the behavior changes of subsets across subspaces, but
also places emphasis on the detailed transition among the
dimensionality reduction results.

6.2 Dimensions Perception

We conduct our second experiment on another classical
dataset, that is, the vehicle dataset, to validate our method
and visual analysis workflow. The data comprises seven
dimensions: economy (MPG), cylinders, displacement (CC),
power (HP), weight (IB), mph, and year.

The first subspace is combinedwith all seven dimensions,
and the rest of the subspaces would each remove one differ-
ent dimension. Fig. 13 shows eight projections, which dis-
play the behavior changes of three subsets filled with red,
blue, and pink.We then compare the co-evolution of the sub-
sets from the scatterplot. The structural changes of the green
area are not obvious, while those of the blue and pink bubble
subsets display great degrees of changes. In the dimensional-
ity reduction results, if we remove the mph dimension in the
subspace, the state of the subsets for the subspaces appears
convergent, and the other subspaces exhibit divergence.

However, we find identifying the differences when two pro-
jection are similar tedious. We explore the changes of the
dimensionality reduction results from the overall correla-
tions view. Furthermore, we find the column and row with
the largest radius of the circle in the right chart of Fig. 13,
which shows that the results of this subspace have a different
change. The subspace, which lacks themph dimension, has a
different blue circle radius in the corresponding column and
row. Therefore, we locate the dominantmph dimension with
dimensionality reduction results.

For further ranking the domain dimensions of the
remaining ones, we repeat the above steps, explore the rest
of the dimensions, and obtain seven dimensionality reduc-
tion results. We find that the MPG dimension is the next
dominant dimension. Similarly, the relations chart indicates
that HP is the next dominant dimension because it has a
large circle in the corresponding row and column, indicat-
ing its great structure change in dimensionality reduction
results. In summary, our visualization technique can sort
the dominant dimensions, and the result is mph–MPG–HP
for the vehicle dataset.

For exploring special points, we click the blue circle of
the matrix chart to explore the difference in projections. For
example, in the comparison of the two projections in
Figs. 12A and 12B, the projection subtraction view helps us

Fig. 12. Detailed dissimilarity comparison. The behavior changes of three subsets in various subspaces of a vehicle dataset (A). The distribution of
red subsets in the raw data (B). The position change of point a is detected with layout constraints (C).

Fig. 11. Sample analysis of the Forest Fires dataset. The left part is the
results of dimensionality reduction results with distinguished subspaces.
The right part is the change degree of dimensionality reduction results
with different subspaces.

Fig. 13. A sample analysis of the vehicle dataset. The subsets’ behavior
changes in dimensionality reduction results with distinct subspaces (A).
The correlation of dimensionality reduction results with subspaces (B).
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efficiently locate some special points. Point a is at the edge
of the red subsets within the former subspace and is then
completely mixed with the green subsets within the latter
subspace. The former subspace consists of MPG, cylinders,
CC, HP, weight, IB, and year, and the latter subspace consists
of MPG, cylinders, CC, HP, IB, mph, and year. Like the previ-
ous conclusion, the mph is a dominant dimension. There-
fore, when the domain dimension is added to the subspace,
the cluster label of the points changes into another cluster
(a’), and the distribution of a in the original data is shown
in Fig. 12D.

6.3 User Study

We invited 14 participants, who are major in computer sci-
ence, to evaluate the effectiveness of the visual encoding of
subsets’ behavior changes. User-feedback are also summa-
rized from 12 users, who have two years of data visualiza-
tion experience, to evaluate the effectiveness of EvoSets. We
first described the visual encoding and user interactions in
EvoSets, then demonstrated the patterns that were exposed
in case studies. We summarized the user-feedback from
three aspects:

Visual Design.Our proposed user interface(Fig. 1) has four
major components, including Figs. 1A, 1B, and 1C. All partic-
ipants can grasp these visual expressions after the descrip-
tion of the system and the training for each visualization
technique. Fig. 1D is our proposed new implementation of a
visual metaphor of subsets’ behavior changes. To evaluate
the effectiveness of the visual encoding, 14 participants were
asked to complete a series of tasks. Fig. 14 summarizes com-
pletion time results of identifying the behavior changes of
two pair-wise subsets. The result shows that most tasks are
completed in about five seconds. The recognization of B1
tends to take more time than B2, B3, and B4. The standard
deviation of T5 (identifying four kinds of subsets’ behavior
changes simultaneously) tend to be larger, which reveals
that the completion times are significantly different. The
completion time of T6 and T8 is slower than other tasks, and
we speculate that multiple subsets in T6 and T8 result in
visual interference. We also found that the accuracy results
are all above 85 percent.When identifying the overall state of
all bubble sets in projections, users give incorrect results.
They all particularly point out subsets’ behavior visualiza-
tion that gives them an intuitive perception of tracking sub-
sets’ convergence or divergence behavior changes.

Usability. All users appreciated our system and con-
firmed the usefulness and effectiveness of subspaces com-
parison in EvoSets. they all agreed that the system is
efficient and effective not only for globally exploring how
subspaces affect dimensionality reduction results but also
for locally identifying detailed changes between dimension-
ality reduction results. They all pointed out that the auto-
matic subspaces creation is time-consuming for interactive
subspaces generation after understanding the characteris-
tics of all dimensions. One of them commented that “The
system allows me to analyze any kinds of multi-dimen-
sional datasets.”

Improvement. The participants provided valuable sugges-
tions on how to strengthen the system. Although the system
received positive feedback during the interview from the
users, they still raised concerns about scalability (e.g., increas-
ing the number of dimensions to thousands). Another valu-
able comment from one user is that all subspaces could be
presented rather than automatically or interactively selecting
some subspaces. Regarding the improvement of the visual
encoding, it can be still challenging for users to remember
visual encoding, especially for the visual encoding of attrib-
utes with increasing dimensions. Two of the participants had
difficulty in relating the visual encoding containing subspaces
encoding and subsets encoding. Thus all of the users suggest
us to further design and simplify the interface.

7 DISCUSSION

Subspaces analysis is one of the common topics and widely
used to analyze dimensionality reduction results in various
domains. Numerous works have been carried out based on
projections. Understanding the meanings and obtaining the
interpretation of dimensions on projections could assist ana-
lysts in finding implicit patterns and proper dimensionality
reduction results for further analysis. As with all empirical
works, our work has limitations.

Visual Consistency. We compute and visualize the
changes between dimensionality reduction results based on
subsets’ distribution, and provide the visual metaphor on
subsets’ behavior changes of convergence or divergence.
However, the visual representation still suffer from the
deviation of dimensionality reduction results. Although we
have relaxed this issue by subsets-based computation,
dimensionality reduction results may be significantly distin-
guished while their visual representation of behavior
changes may be fully similar. Therefore, a more effective
visualization approach should be designed to display the
co-evolution of all dimensionality reduction results and the
subsets.

Scalability Issue. The enormous amount of dimensions
and subsets makes multiple scatterplots difficult to track
and comprehend for both users, raising scalability issue.
The possible solutions with respect to our scenario to this
issue are as follows. From the perspective of raw data, the
hierarchical clustering technique can be leveraged for han-
dling multi-dimensional datasets [19]. From the perspective
of automatic algorithm, algorithms [44] to automatically
decrease the number of subspace explorations can be
applied. From the perspective of manual approach, users
are guided in their interactive exploration by sorting

Fig. 14. Evaluation tasks and analysis of time results. Means (in sec-
onds) and standard deviation of completion time are presented.
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subspaces of interest and using metrics, such as DSC and
DC, or other hybrid methods. Here, we leverage the attrib-
utes statistics method to guide users in removing, replacing,
or adding attributes. In addition, metrics of projection are
used to guide users in deleting or retaining any projection
they want for further exploration.

Steep Learning Curve.The systemprovides userswith a rich
set of features: generating subspaces, comparing projection,
and tracking subsets’ behavior. Users can explore how sub-
spaces affect dimensionality reduction results. However,
remembering series of visual encoding and repeatedly com-
paring projections across subspaces comeswith a steep learn-
ing curve. Thus, utilizing the system could still be
challenging for ordinary users who are not familiar with
dimensionality reduction. More intuitive visualization tech-
niques are desired to encode the overall or subtle changes in
dimensionality reduction results across subspaces.

In future work, we would conduct experiments on higher
dimensional data and use hierarchical dimensions to relax
scalability issues. We would attempt to illustrate all possible
combinations of dimensions and present their characteris-
tics and correlations to improve the efficiency of user explo-
ration. In addition, subset memberships are likely to change
across subspaces, thus, visual clutter poses challenges with
respect to the extended Bubble Sets. The “energy” is deter-
mined by the density of subsets and the number of elements
in the extended Bubble Sets algorithm. The “energy” of sub-
sets would be similar when the number of elements of sub-
sets is similar in messing region. Thus, the result of
reallocating intersecting regions above may not be ideal. We
would also search for a new visual incoding or algorithms
to relax visual clutter in tracking the co-evolution of subsets.

8 CONCLUSION

This paper introduces EvoSets, a visual analysis system for
multi-level exploration of how dimensionality reduction
results change across various subspaces from two perspec-
tives, globally and locally. For parsing global information,
the similarity of the dimensionality reduction results is
revealed based on the distribution of subsets. Furthermore,
for visually tracking the subsets’ behavior changes of con-
vergence or divergence, we extended Bubble Sets to visualize
how subspaces affect the correlation of subset member-
ships. For parsing local information, we define three kinds
of constraints to filter out special points, considering redun-
dant local detail changes.
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