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a b s t r a c t

Acoustic quality detection is vital in the manufactured products quality control field since it represents
the conditions of machines or products. Recent work employed machine learning models in manufac-
tured audio data to detect anomalous patterns. A major challenge is how to select applicable audio
features to meliorate model’s accuracy and precision. To relax this challenge, we extract and analyze
three audio feature types including Time Domain Feature, Frequency Domain Feature, and Cepstrum
Feature to help identify the potential linear and non-linear relationships. In addition, we design a visual
analysis system, namely AFExplorer, to assist data scientists in extracting audio features and selecting
potential feature combinations. AFExplorer integrates four main views to present detailed distribution
and relevance of the audio features, which helps users observe the impact of features visually in the
feature selection. We perform the case study with AFExplore according to the ToyADMOS and MIMII
Dataset to demonstrate the usability and effectiveness of the proposed system.

© 2022 The Authors. Published by Elsevier B.V. on behalf of ZhejiangUniversity and ZhejiangUniversity
Press Co. Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Acoustic quality detection in manufactured products quality
ontrol is to detect the quality of the product based on the audio
ata which is generated when the product is running. In recent
ears, data scientists and researchers employed machine learning
odels in manufactured acoustic quality detection to improve the
ccuracy and efficiency of detection while aiming to reduce labor
osts.
Machine learning is proven to be an effective technique in

umerous fields such as the biomedicine (Palaniappan et al.,
013), manufacturing industry (Zeng et al., 2009), and speech
ecognition (Wang et al., 2018). However, the performance of
he machine learning model depends on the feature selection in
ifferent scenes, which swamps almost machine learning novices
nd senior researchers. Particularly in the manufactured acoustic
uality detection, manufacture audio contains complex features
uch as frequency feature, temporal feature, and noise chaos.
he features used as the input of machine learning models are
ither Mel Frequency Cepstral Coefficients (MFCC) or Linear Pre-
ictive Cepstral Coefficients (LPCC) (Fang et al., 2001; Sousa et al.,
019). Both MFCC and LPCC are presented by approximate (12–
0) components (Zhou et al., 2011). Components selection of
udio features without further analysis could lead to the lack
f audio information such as the components in MFCC cannot
epresent high-frequency information of audio. Therefore, how
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468-502X/© 2022 The Authors. Published by Elsevier B.V. on behalf of Zhejiang Univer
C BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
to select and evaluate feature components to represent manu-
factured audio information is a vital challenge when performing
manufactured acoustic quality detection.

The features of data could represent the data information in a
more efficient and brief form. However, it is improper to use the
whole data feature in the practiced scene. For example, in audio
quality detection of manufactured products, we cannot employ
every audio feature due to the audio data contains many inter-
ference factors such as the features of noises. Feature engineering
can help us to solve this problem by generating, extracting, delet-
ing, and combining features of data. Feature engineering is a
process that converts raw data into a set of features with a better
expression of an underlying problem. Feature engineering is used
in many fields (e.g. image recognition, text classification, and
audio data feature extraction) due to its ability to make machine
learning models with more predictive and comprehensive per-
formance in certain scenes (Khurana et al., 2017). In recent years,
automated and semi-automated feature engineering methods are
proposed to help users select features to convey data information,
while both kinds of methods need a piece of strong domain
knowledge to evaluate the performance of selected features. How
to compare different feature selection methods on audio data
is the other challenge that is confronted by data scientists and
researchers.

In this paper, we propose a novel method focusing on relaxing
the below two challenges. One challenge is how to select and
evaluate audio features and feature components subset in audio
quality detection of manufacture products, and the other challenge

is how to compare different feature selection methods on audio
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ata. Our method integrates three main feature selection meth-
ds including filtering method, wrapper method, and embedded
ethod (Chandrashekar and Sahin, 2014; Guyon and Elisseeff,
003). Our technique allows users to alter filter conditions and
hresholds interactively to investigate feature relationships. In
ddition, our method supports users to modify feature subset
e.g. adding or removing a feature) to explore the performance
f selected features. We perform feature selection methods to
alculate the importance of all the features and present the rank
f features by their importance value to assist users in selecting
mportant features. To help users select and evaluate features,
e employ a multi-view linked digging technique and design an
udio features exploration visual analysis system named AFEx-
lorer. In summary, the primary contributions of this paper are
s follows:

• We propose an interactive method integrating three fea-
ture selection methods including filtering method, wrapper
method, and embedded method to help data scientists and
researchers select and evaluate the audio feature in audio
quality detection of manufactured products.

• We design and implement a visual analysis system (AFEx-
plorer) that combines multi-view to assist users in exploring
and comparing the performance of interactively selected
audio features in audio quality detection.

• We present the case study and conduct a comprehensive
evaluation to demonstrate the effectiveness of the AFEx-
plorer.

The rest of the paper is organized as follows: Section 2 sum-
arizes the related work; Section 3 introduces system workflow
nd the design goals for the challenges in audio data; Section 4
emonstrates the interactive system construction process; Sec-
ion 5 presents the case study we conducted; Section 6 presents
he evaluation from domain experts, and Section 7 gives our
onclusions.

. Related work

In this section, we elaborate on the related work according
o the following three aspects: (1) Audio feature Extraction and
eneration; (2) Feature Selection Method and (3) Visual Analytics
n Feature Selection.

.1. Audio feature extraction and generation

Audio feature extraction plays an important role in the field
f audio processing, hence it has attracted the attention of many
esearchers. There are some efficient toolboxes (e.g., MIR Tool-
ox, Essentia, Libxtract, and Aubio) developed to extract fea-
ures from audio data (Brossier, 2006; Bullock, 2007; Bogdanov
t al., 2013; Lartillot and Toiviainen, 2007). These tools promote
ork and studies progress with their peculiarity on the parts of
eal-time and high-dimensional feature extraction. Furthermore,
offat et al. (2015) evaluated existing audio feature extraction

ibraries in terms of coverage, effort, presentation, and time lag.
In addition, other work dedicated to audio feature generation

rom exited audio features by algorithms and models (Mier-
wa and Morik, 2005; Hamel and Eck, 2010). Hamel and Eck
2010) applied Deep Belief Network (DBN) on Discrete Fourier
ransforms (DFTs) of the audio to extract features. Comparing
ith MFCCs, the learned features perform significantly better.
hey (Liu et al., 2021) proposed the architecture that took the
ulti-scale time-series information into consideration, which

ransfers more suitable semantic features for the
ecision-making. Janssens et al. (2016) proposed a feature learn-
ng model based on convolutional neural networks (CNN) for
ondition monitoring, which utilized manually engineered fea-
ures and a random forest classifier and performed better than

he traditional method.

48
2.2. Feature selection method

Feature selection is a common preprocessing step in ma-
chine learning algorithms. Feature selection has good perfor-
mance in reducing the redundancy of data, removing irrelevant
data, improving the accuracy of learning models, reducing com-
putational complexity, and improving the explainability and in-
terpretability of model results. Feature selection can be divided
into three categories: (a) filter methods, (b) wrapper methods,
and (c) embedded methods.

In filter methods, various evaluation indicators (e.g., corre-
lation measurement, distance measurement, information mea-
surement Lewis, 1992, and consistency measurement Sun et al.,
2013) are used to measure the correlation between each func-
tion and category. Variable ranking techniques are utilized as
the principal criteria for variable selection, and a threshold is
set to filter out the less relevant variables. These methods im-
prove the classification accuracy of most classifiers and reduce
computational complexity. Especially when dealing with large-
scale data or online data, these advantages are more obvious.
Currently, certain entropy-based feature selection models have
been proposed (Battiti, 1994; Hancer et al., 2018). Lewis (1992)
proposed the most basic information gain theory based on mutual
information. Based on this basis, Battiti’s mutual information
feature selection (mutual information for selecting features, MIFS)
method and Peng’s maximum correlation minimum redundancy
(mRMR) method enriched the mutual information theory (Sun
et al., 2013; Sindhwani et al., 2004).

Wrapper methods typically use the evaluation function to im-
plicitly select the features and evaluate them through the model
features returned by the learning algorithm. Selecting subsets of
features according to the accuracy of classification algorithms,
which can be regarded as black boxes that score subsets of
features. The wrapped method is slower than the filter method
in speed. However, the size of the optimized feature subset com-
puted by the wrapped method is relatively small, which is very
conducive to the identification of key features. At the same time,
its accuracy is relatively high, though its generalization ability
is relatively poor. Yang et al. (2011) used decision trees for
feature selection, and genetic algorithms were used to find a set
of feature subsets by minimizing the classification error rate of
decision trees. Chiang and Pell (2004) combined fisher discrimi-
nant analysis with the genetic algorithm to identify key variables
in the process of chemical faults and achieved a better result.
Guyon and Elisseeff (2003) used the classification performance of
support vector machines to measure the importance of features
and finally constructed a classifier with higher classification per-
formance. Michalak and Kwaśnicka (2006) proposed a wrapper
feature selection method based on a dual strategy of mutual
relationships.

Embedded methods incorporate the feature selection as part
of the training process and evaluate each feature set with the
trained classifier. Predictably, wrapper methods take large feature
space and computing time, which decelerates the process of
feature selection. Computing time can be reduced by combining
the filtering method and the packaging method. However, the
embedded method mostly focuses on searching in a local space,
and the coverage is limited.

In general, these technologies have feature extraction capa-
bilities. Whereas these methods also face a common flaw that
when facing this kind of black box system, data scientists and
researchers have rare knowledge of why the features are selected.
If the performance of features allows users to directly perceive,
making users directly observe their connection and significance.
The perception and interaction functions are exactly what the
visual analysis method is good at. The AFExplore has designed
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eature analysis views according to various visual levels, enabling
sers to rapidly perceive the relevance and necessity of the audio
eatures. It also provides users with interactive features to assist
hem in choosing the appropriate set of audio features.

.3. Visual analytics in feature selection

There are various visualization techniques related to feature
election. For example, correlation matrices (Friendly, 2002;
acEachren et al., 2003), radial visualizations (Artur and Minghim
019; Sánchez et al., 2018; Turkay et al., 2011), scatterplot ma-
rices (Wang et al., 2017), feature ranking (Elmqvist et al., 2008;
ratzl et al., 2013), feature clustering (Johansson and Johansson,
009), and dimensionality reduction (DR) (Turkay et al., 2011;
un et al., 2021). Guo (2003) introduced the idea of visualizing
elationships between different feature sets. They proposed
n interactive matrix view where rows and columns represent
eatures and the cells are colored according to feature similar-
ty. The automatically sorted matrix is helpful to select sub-
paces (i.e., feature subsets) where show interesting clusters.
uhlbacher and Piringer (2013) presented an interactive frame-
ork that displays feature ranking for building regression models,
hich aids users to understand the relationship between at-
ributes and a target one. Krause et al. (2014) proposed a visual
nalysis tool called INFUSE, which enables the ensemble of multi-
le feature selection methods by visualizing features importance
etermined by various different feature selection methods in a
adial glyph. Zhao et al. (2019) developed a visualization system
alled FeatureExplorer, which allows users to iteratively refine
nd diagnose the model by selecting features based on their
omain knowledge.
However, the previous work mainly considered the impor-

ance of a single feature but ignored the correlation among dif-
erent features and their impact on the importance of features. In
rder to reveal the relationship between the features in a more
omplete manner, the strength of linear and non-linear corre-
ations is considered in the system. Three primary technologies
f feature selection are also comprehensively is used and the
orresponding view designed to facilitate users to compare the
mportance of each feature. In the process of feature analysis, we
omprehensively consider the influence of features and design
ome interactions to help explore and analyze features. In addi-
ion, users are allowed to obtain prominent features, modify the
ize of the subsets, and obtain new feature subsets to compare
ith other subsets.

. Task analysis and workflow

Following our above-mentioned literature review, we describe
ser tasks in this part. To help users explore and analyze audio
eatures, we summarize four core analysis tasks that appear most
requently in the domain research.

T1 Comparison of feature selection methods. It is indispens-
able to compare three feature selection techniques we ap-
plied in the system to find different highlights. We can com-
pute feature importance which reflects the results from fea-
ture selection techniques through diverse algorithms. These
results can be intuitively perceived by users and facilitate
the visual comparison of feature selection techniques for
each feature. Hence, it is essential to provide appropriate
interaction which allows users to select the feature selection
technique they desiderate.

T2 Exploration of feature correlation. The system should pro-
vide users with detailed information on the different fea-
tures. For example, the Pearson Correlation Coefficient is

generally used to measure the linear relationship between

49
Fig. 1. The components diagram of AFExplorer.

different types of features. The Distance Correlation Coeffi-
cient is also utilized to assist users in perceiving the possible
non-linear relationship between features. The correlation
between features and categories is presented through Vari-
ance Influence Factor (O’brien, 2007). In terms of the vi-
sual design, the system should display detailed information
about features as much as possible.

T3 Detection of feature performance. Through T2, users have
ability to find the specifics and significances of features.
In addition, our system should provide certain interaction
components and options to assist users in the process of
analyzing. Users can further analyze the performance of
the features through mouse events, interactive controls and
interface interactions. Allow users to interactively select
important features they are interested in.

T4 Extraction of feature subset. Our system utilizes an au-
tomatically generation approach to obtain feature subset.
However, there is no guarantee about the quality of these
feature subsets. Hence, it is convenient for users to se-
lect feature subset by combining automatic generation and
interaction.

As shown in Fig. 1, the workflow of AFExplorer mainly includes
three steps: (1) Feature Extraction; (2) Feature Selection; and (3)
Visual Analysis.

In the Feature Extraction step, the system comprehensively
extracts the information contained in each audio data as far
as possible. Three most relevant features are utilized, including
Time Domain Feature, Frequency Domain Feature, and Cepstrum
Feature.

In the Feature Selection step, AFExplorer utilizes three feature
selection algorithms to obtain the degree of importance of audio
features. Quantification of audio features is utilized to determine
the best feature subset generated by different algorithms.

In the Visual Analysis step, we design multiple views to ana-
lyze the feature importance and relation. Users can select multi-
ple features with their demands to generate feature subset during
the analysis process.

4. Data description

4.1. Audio feature extraction

We parse and preprocess the audio data from the ToyAD-

MOS (Koizumi et al., 2019) and MIMII Dataset (Purohit et al.,
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Table 1
Feature sets.
Feature type Feature name Dimension Feature ID

Time domain feature

Short-term energy 1 1
Zero crossing rate 1 2
Auto correlation 1 3
Average magnitude difference 1 4

Frequency domain feature

Spectral centroid 1 5
Spectral bandwidth 1 6
Spectral rolloff 1 7
Chromagram 12 8–19

Cepstrum feature Mel frequency cepstrum coefficient 12 20–31
Linear prediction cepstrum coefficient 12 32–43
2019) to prepare for the next step of extracting features. The data
comprises parts of ToyADMOS and the MIMII Dataset consisting
of the normal/anomalous operating sounds of six types of toy/real
machines. Each recording is a single-channel (approximately) 10-
sec length audio that includes both a target machine’s operating
sound and environmental noise. The following three types of
toy/real machines are used in our study: Toy-car (ToyADMOS),
Valve (MIMII Dataset) and Fan (MIMII Dataset). Each machine’s
dataset consists of (i) around 3000 samples of normal sounds for
training and (ii) 1600 samples each of normal and anomalous
sounds for the test. There are three major methods, including
time domain method, frequency domain method, and cepstrum
analysis method for feature extraction of audio data.

Time Domain Feature. The time domain method mainly con-
iders the waveform information of the audio signal. They re-
lect inherent properties over time, including the amplitude and
requency of changes in the audio signal. In the case of loud
oise, the audio waveform will fluctuate particularly sharply.
he Short-term Energy and Zero Crossing Rate can exhibit pro-
ounced extreme peaks or troughs and irregular fluctuations in
he time series. On the contrary, the Short-term Energy and Zero
rossing Rate will perform relatively smoothly without extreme
pikes in a silent environment. Typical time domain features con-
ist of Short-term Energy, Zero Crossing Rate, Auto Correlation,
tc. (Sharma et al., 2020; Peeters, 2004).
Frequency Domain Feature. The frequency domain method is

o analyze the frequency spectrum of the audio signal to obtain
art of meaningful audio features, such as formant and band-
idth. It is also an essential method of audio signal processing.
requency domain features include the Short-time Fourier Trans-
orm, Spectral Centroid, Spectral Bandwidth, etc. (Sharma et al.,
020; Peeters, 2004; Agostini et al., 2003).
Cepstrum Feature. The cepstrum features of audio signals in-

lude LPCC and MFCC. The signals are in many objective physical
henomena and the combination of its components is the product
ombination signal or the convolution combination signal. How-
ver, it is tough to analyze this kind of nonlinear system/problem.
onducting homomorphic analysis to convert it into a linear
roblem is indispensable. After homomorphic analysis of the
udio signal, the cepstrum parameters of the audio signal will be
btained (Randall, 2017). Therefore, homomorphic analysis is also
nown as inverse cepstrum analysis. The specific audio features
e extracted are shown in Table 1 (see Fig. 2).

.2. Feature selection algorithms

In Section 2, we introduced three types of feature selection
ethods, among which we chose the Relief algorithm (Kira and
endell, 1992) in the filter method and the two wrapper meth-
ds including eXtreme Gradient Boosting (XGBoost) and Light
radient Boosting Machine(LightGBM) (Ke et al., 2017; Chen
nd Guestrin, 2016). Utilizing various classification algorithms as
eak classifiers and with excellent usage of weak classifiers for
50
Fig. 2. Three types of audio features.

cascading, Adaptive Boosting (Adaboost) possesses high accuracy.
Inspired by the embedded method, we combined the REF method
with AdaBoost to extract the audio feature subsets.

Since the Relief algorithm is simply constructed with high
operating efficiency, it has been widely adopted by researchers.
It is a feature weighting algorithm that assigns different weights
to features according to the correlation of each feature and cat-
egory. Features with a weight less than a certain threshold will
be removed. The other two algorithms, XGoost and LightGBM
belong to the Boosting method. The basic idea is to train the
newly added weak classifier according to the current model loss
function’s negative gradient information and combine the trained
weak classifier into the existing model in an accumulated form.
In addition, LightGBM is an improvement to XGBoost which in-
cludes parallel schemes and gradient-based unilateral detection.
The recursive feature elimination method employs a machine
learning model (such as Support Vector Machine and Regression
Models) for multiple rounds of training. Afterward, each round
of training eliminates the features corresponding to some weight
coefficients. The next round of training is performed based on the
new feature set. We apply the above three algorithms to obtain
the importance of each feature. AdaBoost gradually discards the
least important audio features derived from the current method
throughout training, until only the final (and most crucial) feature
remains.

4.3. Relation indicators

Linear strength is often used for feature selection in machine
learning. We calculate the correlation coefficient between differ-
ent feature items, judge the strength of the correlation between
the feature items according to the correlation coefficient and
determine the importance of the feature items. Three correlation
coefficients are used in this paper, including the Pearson Correla-
tion Coefficient (PCC), Distance Correlation Coefficient (DCC), and

Maximal Information Coefficient (MIC) (Moffat et al., 2015).
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The Pearson Correlation Coefficient is a linear correlation co-
fficient and a statistic used to reflect the degree of linear corre-
ation between two variables. The correlation coefficient is repre-
ented by r , which describes the strength of the linear correlation
etween two variables. The value of r is between −1 and +1. If
> 0, it indicates that the two variables are positively correlated.
f r < 0, it means that the two variables are negatively correlated.
o the larger the absolute value of r , the correlation becomes
tronger.
The Distance Correlation Coefficient is created to overcome

he weakness of the Pearson Correlation Coefficient. In the case
f x and x2, even if the Pearson Correlation Coefficient is 0, we
annot conclude that the two variables are independent. They
ay be possibly non-linearly related. If the Distance Correlation
oefficient is 0, we say that these two variables are independent.

corr(X, Y ) =
d̂cov(X, Y )√̂

dcov(X, X )̂dcov(Y , Y )
(1)

The Distance Correlation Coefficient is calculated using Eqs. (1)–
(4). In the formula, dcov2(X, Y ) = Ŝ1 + Ŝ2 −2̂S3, Ŝ1, Ŝ2, and Ŝ3 are
described as follows:

S1 =
1
n2

n∑
i=1

n∑
j=1

∥Xi − Xj∥dX∥Yi − Yj∥dY (2)

Ŝ2 =
1
n2

n∑
i=1

n∑
j=1

∥Xi − Xj∥dX
1
n2

n∑
i=1

n∑
j=1

∥Yi − Yj∥dY (3)

S3 =
1
n3

n∑
i=1

n∑
j=1

n∑
l=1

∥Xi − Xl∥dX∥Yj − Yl∥dY (4)

MIC belongs to the method of Maximal Information-based
Nonparametric Exploration (MINE) (Reshef et al., 2011). It is used
to measure the degree of correlation between two variables X
and Y, which is the strength of linearity or non-linearity. The
MIC overcomes the shortcomings of Mutual information (MI). The
MI method processes laboriously the continuous variables and
its result is not capable to be measured and normalized. MIC
utilizes an optimal discretization method to convert the value of
mutual information into a measurement method, with the value
interval in [0, 1]. The relationship and function between features
can be analyzed in detail through the three coefficients. The MIC
is calculated using Eqs. (5)–(6).

I[x; y] ≈ I[X; Y ] =

∑
X,Y

p(X, Y ) log2
p(X, Y )
p(X)p(Y )

(5)

IC[x; y] = max
|X∥Y |<B

I[X; Y ]

log2(min(|X |, |Y |))
(6)

Variance Inflation Factor (VIF) measures how much the behav-
or (variance) of an independent feature is influenced, or inflated,
y its correlation with the other independent feature. VIF allows a
uick measure of how much a feature is contributing to the error.
hen 0 < VIF ≤ 5, there is hardly any remaining collinearity.
hen 5 < VIF ≤ 10, there is slight collinearity. When 10 <

IF ≤ 100, there is strong collinearity. When VIF ≥ 100, there is
evere complex collinearity. If the VIF is too large, it means that
here is a strong correlation between the independent features.
sers can remove the feature with the larger VIF or combine the
elated features into a single feature.

. Visual design

Following the analytical tasks, we developed AFExplorer, an
nteractive web-based VA system that approves users to utilize
51
Fig. 3. Comparison of feature selection methods.

ultiple metrics and feature selection algorithms in order to
xplore worthwhile features. The frontend is implemented in
avaScript using D3.js, the backend is written in Python with
he Librosa and Sklearn packages. The system includes five vi-
ualization panels. (b) Feature Selection (T1, T4), the heatmap
s designed to compare feature selection algorithms. (c) Feature
pace (T2, T3), the glyph reveals correlation of features and in-
eraction is designed to help users explore the correlation and
ifference of features. (d) Feature Detail (T2, T3), the scatter plot
epresents the detail of audio features. (a) Data Detail (T3) and (e)
eature Subset(T4), the Data Detail panel furnishes the detailed
tatistical index of features and the table (Feature Subset) panel
urnishes subsets users selected.

.1. Feature selection

In the feature selection view, the heat map shows the score of
ach feature by the three automated feature selection methods.
he average and variance of the importance score of each feature
re added into the heat map, which assists users to visually
erceive the different feature importance generated by different
ethods. For example, as shown in Fig. 3, the importance scores
f feature Zero Crossing Rate (zcr) under the three methods are

extremely low and represent inferior visibility. The feature zcr
performs prominently in the variance column. In this view, a
border of prominent color is added to the color block to show
the best feature subset adopted by the current method. It helps
users to identify representative feature sets from each technology,
perceive the differences between different technologies through
these elements, and select the feature subset they demand for a
more detailed understanding in the Feature Space panel.

5.2. Glyph design

The first layer is designed for comparing the feature impor-
tance index of different feature selection algorithms. The opacity
is filled by the average of these three indexes. How to compare
the size of the three values at the same time? Here, we utilize
the pie chart, each algorithm takes up one-third of the circle and
different colors correspond to different algorithms. The length
of the outer radius represents the importance values generated
by different algorithms to the power of one-half. Additionally, in
order to perceive the importance of this feature for users, we also
add opacity to the visual design of glyph. The larger values of the
three importance index of a feature, the more distinct the glyph
presents.
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Fig. 4. Glyph design. (a) is the overall design of glyph. Since the range of VIF
alues are large, if the normalized VIF values are directly mapped to the arc
ength, it will lead to visual misinterpretation. The VIF value of features are
nvisibility in glyph. (b), (c), and (d) are the typical cases. Therefore, we apply
he segmented representation method as shown in (a). When the maximum
hreshold is exceeded, the arc transforms into the red. When VIF value is less
han the minimum threshold, the arc transforms into the green.

The second layer and the third layer of the glyph are to analyze
nfluencing factors and comparability of features. Explicitly, the
econd layer analyzes from the feature itself, and the third layer
ketches the MIC value among each feature. The second layer
escribes the VIF of each feature by arcs. We adopt the segmented
isplay based on the variance inflation factor VIF value threshold.
hile normalizing the VIF value in the step of visual design, we

ind that some VIF values reveal singular values. We consider
wo extreme circumstances in visual design. As the VIF value
xceeds the maximum threshold (VIF > 100), the entire arc will
e colored red. If the VIF value is inferior to the minimal threshold
VIF < 0.1), the arc will be colored green. The third layer of the
glyph shows the MIC between each feature by the bar, and the
heights of imply MIC values.

5.3. Feature Space and feature details

The Feature Space panel provides detailed information on fea-
ures relation and their own characteristics. To represent various
essages completely, we design the glyph which combines the
ie chart and bar chart. The force-directed algorithm is applied
o the layout of glyphs to relax the visual complexity. When the
hreshold of the Pearson Correlation Coefficient value changes,
he link shows on between glyphs. Additionally, we utilize the
istance Correlation Coefficient value to fill the width of the line
o that users can readily perceiving the connection between each
eature.

While clicking the line between glyphs, as shown in Fig. 5,
he Feature Detail panel shows their correlation and the detailed
istribution. A density chart represented by a color gradient al-
ows visualizing the combined distribution of two quantitative
eatures. One feature is represented on the X-axis, the other one
s on the Y -axis.

.4. Data detail and feature subsets extraction

In the Data Detail panel, the system provides users with can-
idates for the audio dataset, showing the characteristics of the
52
udio data in the form of histogram. On account of some features
ith small fluctuations, such as zcr , mapping them directly to
he histogram is hard to extract effective information. We use
ensity plots to show the distribution of characteristic numerical
ariables. To allow users to visualize the exact distribution of each
eature, the interface supports users to view the distribution of
ach feature via a slider and assists users gets an preliminary
erception.
Users utilize the Feature Selection and Feature Space panel to

ind the correlation between features and choose suitable feature
ubsets. They can click the checkbox to add or remove the feature
nteractively and click the button to extract the features. Users
ave access to click on one of the rows of the table to import the
eature subset.

. Case study

We use AFExplorer to conduct experiments and case studies to
erify the effectiveness of our feature selection approach, and we
lso invite domain experts of machine learning and visualization
o evaluate our system. In this section, we describe how AFEx-
lorer can be used to explore the feature subset from 43 features
or audio dataset.

In the beginning, since we start to use the system, the dataset
iew on the right provides us with a detailed distribution of
he data. Multiple indicators in statistics which include standard
eviation, maximum, and minimum, are presented at top of the
ar chart. The Data Detail view can help us to obtain the effective
nformation of the data in the least time. Here, we find that
he zcr of the ID-2 feature has an extremely abnormal standard
eviation (T3) as shown in Fig. 3. We decide to exclude this
eature from the consideration of the feature subset. The best
eature subsets of the three algorithms are stored in the table.
e could directly click on the table to obtain the corresponding

eature subset to explore in the Feature Selection panel.
In Feature Selection panel, based on heat map we found that

he feature zcr is colored by pink in the STD line as shown in
ig. 3. It reveals that the three algorithms produce low impor-
ance value. Comparing with other features, such as energy, the
olor is also light (T1) (T3). In the heat map, we find that the
nner-class features have the same appearance. In particular, in
he feature of mfcc features, from mfcc-6 to mfcc-9 are adopted
y LightGBM and XGBoost. The status is worthy for us to explore
he hidden information.

In feature spaces, we choose features from mfcc-6 to mfcc-
to compare the differences as shown in Fig. 5. Comparing
ith glyphs, the inside pie chart shows the importance of each
lgorithm. We observe the mfcc-8 has the maximum area. The
econd layer of the glyph represents its VIF value, it also has
he smallest arc length. Refer to Fig. 4, mfcc-8 has infinitesimal
ollinearity. The third layer shows the MIC value of this feature
nd other features. In order to compare with other MIC values,
he MI value with the feature itself is calculated and kept. The
eight of the histogram on mfcc-8’s outer layer is almost in-
isible as shown in Fig. 6, indicating that the correlation with
ther features is low. Combining above three points, mfcc-8 has
emonstrated excellent performance including high importance
alue, low correlation, and perfect stability.
We explore the similarity between the inner-class features

y adjusting the threshold of the Pearson Correlation Coefficient.
hen the threshold is reduced to 0.3, mfcc-8 and mfcc-7 reveal
weak correlation(T2). By clicking on the line between the two
lyphs, their detailed distribution and specific Pearson Correla-
ion Coefficient values are displayed in the detailed view. In Fig. 5,
hese features IDs are saved in the table(T4). We use AFExplorer
o select the feature subsets of three types of audio data from
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Fig. 5. Case of features extraction. (a) Data Detail gives detailed distribution about features. (b) Feature Selection presents the prominent features for users, we
selected four features for exploration. (c) Feature Space displays the correlation with features. Through adjust the threshold of the Pearson Correlation Coefficient,
the glyph will be connected by the gray line. (d) Feature Detail shows the mfcc-7 and mfcc-8 detail distribution. (e) Click the button of EXTRACT to export feature
subsets.
Table 2
Results for the three types of datasets.
Dataset Method Feature subset Dimension Result

Accuracy Precision F1-score

Valve

XGBoost 1, 3, 4, 6, 7, 8, 11, 12, 13, 14, 15, 17, 18, 19, 20, 27, 28, 29, 31, 32, 33 21 0.808 0.875 0.813
LightGBM 1, 4, 6, 7, 8, 11, 13, 14, 15, 16, 18, 20, 31, 32, 33, 34, 35, 40, 41 19 0.781 0.868 0.804
Relief 1, 2, 3, 4, 5, 6, 15, 20, 23, 24, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,

40, 41, 42
27 0.712 0.78 0.833

AFExplorer_1 1, 3, 11, 17, 18, 19, 20, 23, 24, 25, 26, 30, 36, 37, 39, 43 16 0.795 0.892 0.815

Fan

XGBoost 9, 10, 12, 14, 16, 19, 21, 22, 26, 27, 28, 35 12 0.738 0.776 0.846
LightGBM 4, 6, 8, 12, 13, 14, 15, 16, 18, 19, 20, 23, 25, 26, 27, 28, 29, 30, 31, 38, 42 21 0.702 0.77 0.82
Relief 1, 6, 12, 16, 17, 19, 22, 27, 29, 33, 35, 36, 37, 38, 39, 40, 41, 42, 43 19 0.75 0.778 0.85
AFExplorer_2 6, 12, 14, 16, 17, 19, 22, 25, 26, 27, 28, 29, 35, 38, 42 15 0.768 0.801 0.861

Toycar

XGBoost 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 26, 28, 30, 31,
33, 36, 37, 39, 40, 42

30 0.818 0.808 0.761

LightGBM 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 23, 31, 32, 33, 36, 42 21 0.833 0.843 0.776
Relief 2, 11, 13, 14, 16, 26, 28, 29, 30, 31, 32, 33, 35, 36, 38, 40, 41, 42 18 0.833 0.852 0.773
AFExplorer_3 1, 5, 6, 7, 9, 22, 23, 25, 26, 27, 28, 35, 36, 38, 42 16 0.862 0.864 0.821
Fig. 6. (a) mfcc-7; (b) mfcc-8; (c) mfcc-9; (d) mfcc-6.
53
theToyADMOS and MIMII Dataset (Fan, Valve, and ToyCar). We
apply the same model (AbaBoost) to test the selected feature sub-
sets and applied accuracy, precision, and F1-score to these three
commonly used indicators in machine learning for measuring test
results. The results are shown in Table 2. The subsets of features
selected by AFExplorer are smaller in number than the set of
features retrieved by the three automated technologies and the
accuracy and precision are enhanced.

7. Evaluation and discussion

We introduced our methods and visual analysis system of
feature selection to three experts and asked for their opinions.
The first expert (E1) is a researcher working in the machine
learning field for four years. The second expert (E2) is a researcher
from academic field that focuses on audio recognition. The third
expert (E3) is a professor in computer science and a visualization
researcher with experience in visualization and machine learning.
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Usability and Interaction. We received much positive feed-
ack and suggestive comments. E1, E2, and E3 all agreed that
ur approach can relax the traditional feature selection on the
roblem of incomplete cognition on the features and assist them
n efficiently extracting the feature subsets.

E3 affirmed the function of system perception and interaction.
e said that from the perspective of user perception, the system
uccessfully applied the contrast of color and transparency in the
iew to allow users to fetch more details. Meanwhile, new glyph
as been designed to sustain users to further exploration. At the
nteractive level, users view the concrete details of the data and
nteract with the system through different controls, which helps
o effectively explore and extract feature subsets. ‘‘Combining
eature selection and visualization is a solid idea and makes the
rocessing of extract feature be more impressive and effective.
he visual analysis system can help users to conduct good feature
ets and feature analysis in multiple views’’. E2 said. He would
ike to employ such a system to conduct work related to different
omains, such as music, animal sounds and soundscape ecology.
Scalability and Limitation. They also took notice of the sys-

tem‘s efficiency. E1 and E2 stated the major concern that how
to efficiently handle large datasets. Due to the characteristic of
the REF algorithm, it will iteratively to choose the feature subsets
step by step. Thus, our system has not yet been able to meet the
real-time requirements. However, the system provides the view
to assist users in exporting the feature subsets. The filter method
and the wrapper method based on the decision tree adopted
by the system have advantages in processing efficiency. When
dealing with big data, the system faces the same problem in the
field of machine learning, in that it takes time to train the data
and generate the results. E3 expressed the system should support
more methods and algorithms for users to select, not limit to
three algorithms that have been adopted. In the current work, we
conducted only a few explorations and research on these three
methods. In future work, we will consider integrating multiple
methods to provide more choices. The system has limitations in
dealing with unlabeled audio data and extracting features in a
complicated environment. These directions are worthy of further
exploration.

8. Conclusion

In this paper, we presented AFExplorer, a VA system with the
aim to extract feature subsets using traditional feature selection
methods interactive analysis and detection approaches. Various
visualization panels support users in selecting applicable features
and generating new feature subsets. Users can explore the impact
of the features with several correlation coefficient measures and
feature selection techniques. Interactive visualization techniques
are proposed to display the features and help users visually
compare the feature’s differences with their own interests. Our
evaluation demonstrated that the interface could be learned effi-
ciently and the proposed workflow was comprehensible. Future
developments should focus on fields with complex scenes and the
combination of heterogeneous datasets from different sources.
As future work, we intend to address aspects of scalability and
support for greater diversity in data types. Taking advantage of
the filter methods and visualization tools would be a nice choice
in feature selection problems.
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