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Abstract—Diffusion tensor imaging (DTI) has been used to study the effects of neurodegenerative diseases on neural pathways,

which may lead to more reliable and early diagnosis of these diseases as well as a better understanding of how they affect the brain.

We introduce a predictive visual analytics system for studying patient groups based on their labeled DTI fiber tract data and

corresponding statistics. The system’s machine-learning-augmented interface guides the user through an organized and holistic

analysis space, including the statistical feature space, the physical space, and the space of patients over different groups. We use a

custom machine learning pipeline to help narrow down this large analysis space and then explore it pragmatically through a range of

linked visualizations. We conduct several case studies using DTI and T1-weighted images from the research database of Parkinson’s

Progression Markers Initiative.
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1 INTRODUCTION

MORE than 6.1M people are living with Parkinson’s dis-
ease (PD) [1] and more than 43.8M people are living

with Alzheimer’s disease [2]. There is no cure [3], yet treat-
ment can slow the progression. Thus, early detection is
important but difficult due to uncertainty in how the dis-
ease begins and what the early markers are [4]; indeed, the
early-stage clinical PD misdiagnosis rate is about 50% [5].

Diffusion tensor imaging (DTI) is an advanced brain
imaging technique that measures water diffusivity in brain
tissue [6]. By applying fiber reconstruction [7] to the mea-
sured diffusivity, we can estimate the location and orienta-
tion of the brain’s white matter fiber tracts. In-depth analysis
of the fiber tracts helps researchers better understand these
diseases and their progression [8]. Neuroscientists have
found statistical differences between healthy and diseased
brains [9], [10] using DTI images and fiber tracts. Also, many
categories of machine learning (ML) techniques have been
validated and employed in a range of neurodegenerative dis-
eases [11], [12]. The use of diffusion tensor features and fiber

connectivities has a potential for improving diagnostic accu-
racy in clinical assessment. While such approaches can
identify useful statistical markers, understanding of the rela-
tionship between the statistical and physiological features is
needed to advance our knowledge of the disease.

To accomplish this, one first needs to find the relevant
statistical features. This can be difficult since there are many
irrelevant differences and datasets often lack the scale and
variation to make confident statistical inferences from each
feature. In addition, these statistics are usually derived
through spatial aggregation; for example, aggregating diffu-
sion measures over a neuroanatomical brain parcellation
derived from anatomical landmarks. The aggregated statis-
tics may then be used for a pairwise comparison between
individuals. This is a practical approach; however, it pro-
vides a limited ability to precisely locate the physical fea-
tures. For example, in a highly affected brain region, the
salient statistical feature may be “watered down” because it
may incorporate a certain amount of unaffected parts along
with the affected parts. Visual analytics (VA) could thus
add insight and confidence into the differences once the
embedded physical features are discovered.

Thus, direct rendering of the fiber tracts is indispensable
in providing a deeper understanding (both physiological
and statistical). In addition to the fiber microstructure, color
can be mapped to the fibers to display the tensor measure-
ments (that were aggregated for statistical modeling) in their
full detail. Through this process, neuroscientists may notice
patterns and anomalies as well as issues that might affect the
statistical analysis in non-trivial ways. They can then employ
expert knowledge to reason about the statistical features and
the biological factors to form a new hypothesis.

Still, after a salient statistical feature is found, its distribu-
tion in the physical space may have a high amount of

� Chaoqing Xu and Ronghua Liang are with the College of Computer Sci-
ence, Zhejiang University of Technology, Hangzhou, Zhejiang 310023,
China. E-mail: superclearxu@gmail.com, rhliang@zjut.edu.cn.

� Tyson Neuroth, Takanori Fujiwara, and Kwan-Liu Ma are with the Uni-
versity of California, Davis, CA 95616 USA. E-mail: {taneuroth,
tfujiwara, klma}@ucdavis.edu.

Manuscript received 28 Oct. 2020; revised 17 Nov. 2021; accepted 4 Dec.
2021. Date of publication 29 Dec. 2021; date of current version 28 Feb. 2023.
This work was supported in part by U.S. National Science Foundation through
under Grants IIS-1528203 and IIS-1741536 and in part by the Nature Science
Foundation of China through under Grant 61976075.
(Corresponding author: Ronghua Liang.)
Recommended for acceptance by D. Gotz.
Digital Object Identifier no. 10.1109/TVCG.2021.3137174

2020 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 29, NO. 4, APRIL 2023

1077-2626 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Zhejiang University of Technology. Downloaded on March 03,2023 at 08:48:05 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-0955-5611
https://orcid.org/0000-0003-0955-5611
https://orcid.org/0000-0003-0955-5611
https://orcid.org/0000-0003-0955-5611
https://orcid.org/0000-0003-0955-5611
https://orcid.org/0000-0002-5866-5959
https://orcid.org/0000-0002-5866-5959
https://orcid.org/0000-0002-5866-5959
https://orcid.org/0000-0002-5866-5959
https://orcid.org/0000-0002-5866-5959
https://orcid.org/0000-0002-6382-2752
https://orcid.org/0000-0002-6382-2752
https://orcid.org/0000-0002-6382-2752
https://orcid.org/0000-0002-6382-2752
https://orcid.org/0000-0002-6382-2752
https://orcid.org/0000-0003-2077-9608
https://orcid.org/0000-0003-2077-9608
https://orcid.org/0000-0003-2077-9608
https://orcid.org/0000-0003-2077-9608
https://orcid.org/0000-0003-2077-9608
https://orcid.org/0000-0001-8086-0366
https://orcid.org/0000-0001-8086-0366
https://orcid.org/0000-0001-8086-0366
https://orcid.org/0000-0001-8086-0366
https://orcid.org/0000-0001-8086-0366
mailto:superclearxu@gmail.com
mailto:rhliang@zjut.edu.cn
mailto:taneuroth@ucdavis.edu
mailto:tfujiwara@ucdavis.edu
mailto:klma@ucdavis.edu


additional variations between individuals. In this case, one
should consider the multiple comparison problem [13], [14],
which highlights the risk of false visual insight discovery.
Thus, the detailed physical differences must be conceptually
reasoned about by experts. To maximize the effectiveness of
their analysis, it is important to allow them to easily explore
different features and subjects in a pragmatic way, grasp
the wider context, and maintain a strong sense of awareness
about the involved uncertainties.

Based on the identified problems and through consulting
neuroscientists, we design an intelligent VA system. To the
best of our knowledge, this is the first predictive brain fiber
VA system that helps neuroscientists explore neurodegener-
ative diseases. The user interface (UI) organizes the analysis
space into three primary modalities (different modes of
analysis prioritization) for exploration: statistical features,
spatial regions, and individual subjects. A custom ML pipe-
line is used to estimate the measures of saliency and uncer-
tainty for each modality. Specifically, we employ Extremely
Randomized Trees to estimate scores for each attribute,
Support-vector Machine (SVM) to predict the importance of
each modality, and Cross-Validation (CV) to cope with the
overfitting. This ML-enhanced UI approach guides the user
to drill down into details. Linked visualizations are used to
add important context and awareness throughout the pro-
cess, such as “how good the model is”, “how certain the
model is about the suggestions”, “how the features relate to
the model”, “how the features relate to each other”, “how
the model relates to the subjects”, “how the groups differ
with one another”, “how individual subjects differ with oth-
ers”, “how the salient features change over time”, and “how
the features appear when spatially disaggregated and
examined through direct 3D rendering”.

Since all of the information related to the analysis is auto-
matically displayed and linked throughout the process, one
can immediately inspect and relate different aspects of the
data. This provides advantages over the other systems in
terms of analysis efficiency, helps to mitigate the risk of
making false insights, and supports quick and informed
hypothesis generation. Our specific contributions include:

� a tailored and holistic brain fiber visualization sys-
tem for studying neurodegenerative disease,

� an ML assisted visualization pipeline to narrow
down the large information space, and

� an exploratory analysis workflow with complimen-
tary visualizations and interactions.

2 BACKGROUND AND RELATED WORK

We address three major problems in neurodegenerative dis-
ease analysis, which are identified through reviewing litera-
ture and consulting neuroscientists. We describe each
problem’s details, using PD research as a concrete example.
Then, we discuss relevant works.

2.1 Problems in Neurodegenerative Disease
Research

We identified research challenges in the fiber-tract-based
analysis of neurodegenerative disease with an extensive
survey on related works. First, many features identified
using tractography have not been thoroughly verified in

comparisons with the underlying anatomy in clinic research
[15]. Researchers also pointed out the need for a better
understanding of the physiological changes in different
brain regions and the detection of brain regions more focally
using white matter fiber tracts [16], [17]. Additionally, to
understand the disease, it is essential to not only identify
the differences between patients and controls but also exam-
ine the influential factor on disease progress from the differ-
ences within a patient group [15], [17]. Lastly, there is a
necessity to provide engineering guidelines to systemati-
cally explore white matter integrity in neurodegenerative
disease [18]. Based on these identified challenges, we then
summarized the following requirements.

Problem 1. Large Feature Space. When analyzing neurode-
generative disease, neuroscientists typically analyze specific
brain regions, fiber statistics, and tensor measures. The
whole brain can be decomposed into dozens to hundreds of
regions, and the features can be extracted separately for
each region [8]. The total feature space is very large when
compared to the number of available calibrated brain scans
[15]. This presents statistical challenges when identifying
which features are true indicators of the disease.

Problem 2. Fiber Microstructure and DTI Measurements.
Structural and statistical differences have been reported in
many brain regions [9], [19], [20], [21]. Aarabi et al. suggested
that fibers interconnecting multiple lobes may be especially
atrophied and the corresponding fiber volume and average
length could indicate damage [19]. Some studies suggested
that posterior cortical atrophy begins in the left hemisphere
before the right [22]. Other researchers found that PD begins
in specific regions but ultimately affects the whole brain [23],
[24]. However, different studies sometimes come to contra-
dictory conclusions [9], [25]. Overall, we still do not
completely understand the anatomical changes.

Problem 3. Hypothesis Generation. Neuroscientists often
make hypotheses based on observations, experimental stud-
ies, and literature reviews. For example, Kamagata et al.
hypothesized that structural changes in the nigrostriatal
area may indicate PD [26]. Hepp et al. hypothesized that
damage to the fibers connecting the nucleus basalis and the
cerebral cortex may cause the hallucinations suffered by PD
subjects [27]. One question that remains unsolved is the true
cause of the disease. Important factors may still be undis-
covered. Thus, new hypothesis generation is an important
part of the research effort.

2.2 Related Work

Fiber tract visualization. MRtrix3 [28] is a state-of-the-art
package for fiber reconstruction and analysis. For visualiz-
ing fiber tracts and brain images, MITK [29] is a commonly
used toolkit. SlicerDMRI [30] is an actively maintained and
widely used open-source plugin in 3DSlicer [31], which is
used for diffusion MRI analysis and tractography data visu-
alization. These tools provide a core functionality for gener-
ating and visualizing fiber tracts. Schultz and Vilanova
provided various visualization methods, such as glyph
representation of diffusion tensors and rendering of fiber
tractography [32]. Zhang et al. also designed glyphs for com-
parative visualization of the diffusion tensors [33]. How-
ever, due to the scale and complexity of fiber tract data, VA
of fiber structure is still an active research topic [34].
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For enhanced fiber rendering, the researchers developed
screen-space ambient occlusion (SSAO) [35] and LineAO
[36], which are high-performance shadow-like rendering
methods and enhance spatial perception. Everts et al. intro-
duced an illustrative rendering method that emphasizes
fiber structure using depth-dependent halos [37] and a
method based on a local contraction of fiber bundles to
reduce occlusion while preserving the fiber macro-structure
[34]. Jianu et al. developed a method that links the 3D view
with abstract 2D views. Their method helps users navigate
complex fiber structure and connectivity [38]. They also
introduced 2D neural map projections as abstract anatomi-
cal representations [39]. Murugesan et al.[40] developed a
visualization tool for exploring the modular and hierarchi-
cal organization of brain regions.

Visual Analytics for Cohort Studies. The broader topic that
our work falls into is VA for cohort studies, where systems
often require customization for specific applications. Preim
et al. provided a survey of this topic [41]. Angelelli et al. intro-
duced a data-cubemodel to link heterogeneous data and help
neuroscientists relate information [42]. Steenwijk et al. intro-
duced a hypothesis-driven VA framework for multi-variate,
multi-model, and multi-timepoint data to facilitate across-
subject visual exploration [43]. Agus et al. provided a frame-
work that uses radiance-based absorption maps and node-
link layout representations for visual exploration of energy
absorption in nanometric brain volumes [44]. Krueger et al.
presented a semi-automated analytics tool for interactive VA
of phenotype in high-dimensional image data [45]. For group-
level feature analysis, contrastive-learning-basedVAmethods
were developed to identify features highly contributed to each
group’s characteristics [46], [47], [48]. Fujiwara et al. devel-
oped a VA system that visualizes the similarities of multiple
brain networks with dimensionality reduction [49]. Yang et al.
introduced a blockwise abstraction of brain connectome
ensembles [50]. Angulo et al. developed a web-based brain
data visualization framework [51], where they use a linked-
card infrastructure for interactive filtering and view linking
(similar to VTK filter pipelines [52]). Daniel et al. created a VA
system for comparative analysis of fMRI data between subject
groups [53]. Daniel et al.’s system is similar to ours in that it
incorporates spatial localization, group-level comparison,
linked information visualization, and a 3D anatomical view.
However, our system (1) focuses on fiber tract data rather
than fMRI data, (2) identifies regions and features with
advanced ML methods, and (3) incorporates individual-level
subject prediction as the third modality of exploration. Over-
all, we found that VA systems tailored specifically for the
detailed group-level analysis of fiber tracts are missing and
there has been little VAwork utilizingML for brain data anal-
ysis. Vis+AI. Visualization combined with ML/artificial intel-
ligence (Vis+AI) has gained more interest recently. Hohman
et al. conducted an interrogative survey [54]. Levy-Fix et al.
reviewed what is needed in Vis+AI to support clinical appli-
cations [55].Other examples can be found in study of semantic
features in documents [56], high-dimensional phenotype
analysis [45], AI driven graph visualization [57], [58], in-situ
image prediction for scientific simulations [59], and auto-
mated annotation of visualizations [60]. ML also plays an
important role in visualization as a basis for ranking features
[61], [62] or visual components [63].

Predictive Analysis of Neurodegenerative Disease. In neuro-
science, ML has shown promise for disease detection using
multiple types of data, including diffusion tensor features
and anatomic fiber connectivities. A survey of ML applica-
tions on MRI data provides a comprehensive view of ML
usages in a wide range of diseases [11]. Dinov et al. tested a
variety of classification models (e.g., SVM and Decision
Tree) with PD data and the results showed a significant
power in predicting PD [64]. Lella et al. provided a compari-
son between several ML methods for neurodegenerative
disease prediction using diffusion tensor measures and
structural features of brain fiber tracts [65]. Similarly, Cas-
tellazzi et al. evaluated multiple ML algorithms on AD and
showed great potential for improving diagnostic accuracy
in clinical assessments when using the features of local dif-
fusion tensors and brain region connectivities [66]. Martin
et al. also presented that PD can be predicted with ML mod-
els using diffusion tensor measurements and white matter
volumes [67]. Despite the promise as shown in the works
above, not much research has been done in the collective
usage of ML and VA, which is especially intriguing for fiber
tract data as it can offer unique physiological insight
through qualitative VA. This has inspired our ML-guided
VA that explores fiber tract data between subject groups.

3 DESIGN GOALS

From the challenges discussed in Section 2.1, we identify
our design goals using our team’s expertise, which includes
ML, VA, and fiber tract visualization. The resulting design
goals below inform our choice of methodology in Section 4.

DG 1: Guided Analysis based on Three Modalities. The brain
fiber data is multifaceted. It contains multiple features per
space-time location. As shown in Fig. 1, features extracted
from the data are also high dimensional and multifaceted
(e.g., features from diffusion tensors and fiber tracts). To
facilitate an effective workflow, with computational analysis
support (specifically ML), our system should help the user
prioritize more salient (1) features, (2) regions, and (3) sub-
jects to choose data subsets for detailed analysis. The
regions and features should be standard and interpretable
so that experts can easily grasp the physiological basis,
assimilate existing literature, and make hypotheses. Due to
a large feature space relative to the number of scans, we
must strive to avoid overfitting, reduce ranking instability,
and highlight the uncertainties.

DG 2: Quality Visualization of Brain Fibers. For anatomical
understanding, VA of the fiber tracts and salient variables

Fig. 1. The feature extraction process and the cohort data stored in a
CSV format. The extracted features are described in Section 4.2.1.

2022 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 29, NO. 4, APRIL 2023

Authorized licensed use limited to: Zhejiang University of Technology. Downloaded on March 03,2023 at 08:48:05 UTC from IEEE Xplore.  Restrictions apply. 



in the physical space is required. High-quality graphics ren-
dering can help understand the spatial relations of brain
fibers. While the rendering should be effective at showing
the structure, it should be also efficient enough to interac-
tively render multiple large fiber sets.

DG 3: Modalities for Comparison. To address the hypothe-
sis generation, it is fundamental to perform the comparison
of different subjects and/or groups with different modali-
ties and time steps. Through the comparison, experts can
relate diverse aspects to clinical outcomes (e.g., healthy ver-
sus PD). As we utilize ML for the comparison, the system
should also depict the relationships between data and the
prediction.

DG 4: Easy Non-Linear Exploration. Due to a large number
of features, fiber tracts, and subjects, diverse aspects could
be explored. The analytical process may proceed and
change according to emerged patterns or discovered knowl-
edge during the analysis. Therefore, our system should pro-
vide an intuitive and fully interactive UI to serve the
neuroscientists’ changing analysis needs.

4 METHODS

We begin with an overview of our system. Then, in order to
better prepare the reader to understand the system, we
describe the data that we have applied our system to,
including: acquisition, prepossessing, fiber tracking, and
feature extraction (note that the acquisition and derivation
of this data is neither novel, nor a contribution of this work,
and may be changed depending on application). Then, we
describe the system’s workflow, including the ML pipeline,
and interactive visualizations. The ML pipeline plays as the
central part of the system. A demonstration video of the sys-
tem is available at https://takanori-fujiwara.github.io/s/
ml-brain-fiber/.

4.1 System Overview

Fig. 2 shows our VA workflow and UI. The preprocessing
step of the VA workflow includes fiber tracking and feature
extraction. Use of the system begins by selecting cohorts
through a module that balances DTI scans in each group
(i.e., PD or healthy control (HC)) while stratifying with age
and gender of subjects corresponding to the scans (Fig. 2 A).
Next, the user initiates the ML pipeline depicted in Fig. 2 B.
This generates saliency measures for each of the three
modalities (i.e., feature, region, and subject) through the
process described in Section 4.3. The performance of the ML
model used in this process is summarized in Fig. 2 B. After-
ward, the average and standard deviation of the saliency
measures for each modality are displayed in Fig. 2 C. Based
on the interactive exploration performed with these mod-
ules, the system updates visualizations of the associated
information and brain fiber tracts (Fig. 2 D and 2 E). By
reviewing these visualizations, the user may obtain insights
into the neurodegenerative disease.

4.2 Data Description and Processing

Throughout the paper, we analyze the PPMI database’s [68]
MRI scans/images (DTI and T1-weighted) of PD and HC
subjects. However, our methods, including data processing,
are generic enough to apply to other datasets. We first

provide the details of the MRI images obtained by PPMI
and then describe how we process the images for our
analysis.

4.2.1 Data Description

MRI parameters, such as gradient direction, b-value, and
voxel resolution, have a crucial impact on the scalar meas-
urements used for a clinical study. To prevent errors, the
MRI images provided by PPMI are collected based on stan-
dardized and strict acquisition protocols developed by the
steering committee on 3T Siemens scanners.

Each visit includes DTI and T1-weighted images. For each
DTI image, a 2D echo-planar DTI sequence is acquired with
the following parameters: TR ¼ 900 ms, TE ¼ 88 ms, image
matrix ¼ 116� 116� 72 and voxel resolution ¼ 1:98� 1:98�
2�mm3, 64 gradient volumes (b ¼ 1; 000s=mm2), and one
non-gradient volume (b ¼ 0s=mm2). The acquisition parame-
ters for T1-weighted images are as follows: TR ¼ 2; 300 ms,
TE ¼ 2:98 ms, image matrix¼ 160� 240� 256, and voxel res-
olution¼ 1� 1� 1�mm3.

4.2.2 Data Processing

Here describe the details of data processing, which con-
sists of three steps: fiber tracking, feature extraction, and
cohort formulation. These are performed outside of the
VA system.

1) Fiber Tracking. This step generates white matter fiber
tracts from the RAW images (from DTI to white matter fiber
tracts in Fig. 1). We first convert the RAW images from the
Digital Image and Communications in Medicine (DICOM)
format to the Neuroimaging Informatics Technology Initia-
tive (NIFTI) format. Then, we perform MRI data denoising
and preprocessing, including eddy-current induced distor-
tion correction, motion correction, and susceptibility
induced distortion correction, using “dwidenoise” and
“dwipreproc” scripts in MRtrix3, which is a recommended
data cleaning process that uses FSL’s “eddy” [69],“toppup”
[70], and “applytopup” [71] tools. This can reduce artifacts
in MRI images and address many additional effects of noise
during brain fiber reconstruction, such as the bias of fiber
orientation estimation and error tracking of bifurcated
fibers. Then, we fix magnet inhomogeneity (e.g., intensity
loss and blurring) and perform image correction (e.g., eddy
current correction and head motion correction) using the
standard “recon-all” script in FreeSurfer [74]. Afterward,
we align the T1-weighted images to the DTI images (intra-
subject registration) using FSL [72]. Intra-subject registra-
tion reduces the distortion in the anatomical structure of
fibers extracted from the region of interest (ROI) in a subject.
We also perform inter-subject registration using FSL, which
applies the standard template (MNI152) to each of the sub-
ject’s MRI images. After intra-registration and inter-registra-
tion, we perform brain parcellation using FSL, which splits
the brain into regions. The parcellation is based on Free-
Surfer’s default atlas (the Desikan/Killiany cortical atlas),
which consists of 42 cortical regions [73]. We then perform
brain fiber tractography using a state-of-the-art framework
[7], which can facilitate biologically plausible fiber recon-
struction and provide anatomically reliable brain fiber
tracts. Afterward, by referring to the brain parcellation
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information, we can categorize fiber tracts and obtain the
corresponding features at the whole-brain level and brain
region level.

2) Feature Extraction. We extract fiber features from the
constructed brain fiber tracts (Fig. 1) and diffusion tensors,
using MRtrix3 [28] and FreeSurfer [74]. The features fall
into two categories: tract-based and tensor-based. The for-
mer measures regional fiber structures (e.g., density and
length) while the latter measures water diffusivity patterns
based on a tensor model. Evidence suggests that both cate-
gories are affected by neurodegenerative disease [75], [76].

The diffusion measures we compute with FreeSurfer
include: the raw T2 signal (S0), the eigenvalues (�1; �2, and
�3) representing diffusion in the directions of each of
the three eigenvectors of the diffusion tensor, fractional

anisotropy (FA), mode of anisotropy (MO), and mean diffu-
sivity (MD). With MRtrix3, we also compute the other met-
rics, including radial diffusivity (RD), relative anisotropy
(RA), axial diffusivity (AD), and the Westin metrics (linear-
ity (CL), planarity (CP), and sphericity (CS)). O’Donnell
et al. provide the definitions of these measures [77].

We use MRtrix3 and FreeSurfer to bundle fibers based on
which cortical regions are passed by each fiber. Here, we
use FreeSurfer to apply the cortical structure parcellation,
which assigns a neuroanatomical label to each cortical
region.

Also, since PD has been reported to start from one region
and then spread to others, we further divide the bundles
into two categories: intra- and inter-connects by referring to
the information of passed cortical regions. Intra-connects

Fig. 2. The UI of our VA system (top) and workflow (bottom), where each analysis step is annotated with the label of the corresponding system mod-
ule. The cohort selection module (A) supports balanced and stratified subject group selection and demographic analysis. The ML module (B) can be
customized before being executed. After the execution, this module shows a summary of the model performance and overall uncertainty with an
ROC curve, confusion matrix, the group sizes, and multiple performance measures (accuracy, precision, recall, and F1). The interface for exploration
(C) includes three exploration modules: the feature, region, and subject modules. Each of them can be toggled between plot and table views. The val-
ues displayed include the averages and standard deviations of the estimated saliencies and predictions. The subject module also encodes the class
labels and binary predictions. The information visualization module (D) includes a range of views for comparative analysis. The 3D fiber rendering
module (E) shows selected subjects’ fibers for physiological analysis. The selected feature is mapped to the fibers through color. Here, a divergent
color shows the feature value difference between the selected subjects and the mean of the control group. At the top, this module also shows the sub-
jects’ information and a timeline of their mean values of the selected feature over time. The intervals on the timeline can be clicked to render the
fibers corresponding to the clicked time.
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(or intra-parcel connections) represent connections that both
start and end within the same cortical region while the inter-
connects (or inter-parcel connections) represent the connec-
tions that start and end different cortical regions. Each corti-
cal region has both intra- and inter-connects. Note that this
definition of inter-connects does not refer to fibers that con-
nect the two hemispheres (e.g., commissural fibers).

Also, since cortical asymmetry and hemispheric predom-
inance have been discovered in neurodegenerative disease
[78], the features ‘Delta-LR’ are extracted to represent asym-
metry between the left and right hemispheres. The tract-
based features include two categories: cortical region meas-
ures and whole brain measures. The former includes the
number of fibers, average fiber length, intra- and inter-fiber
numbers, intra- and inter-fiber lengths, and ‘Delta-LR’ aver-
age fiber length. The latter includes the number of associa-
tion fibers, projection fibers, commissural fibers, and the
fibers in each brain lobe. Tensor-based features are averaged
over the different bundles of fibers.

Our choice of features is motivated by literature review
and to favor interpretability, follow standard conventions,
and support fiber-tract-based analysis (DG1).

3) Cohort Formation. This step formulates cohort data (the
table in Fig. 1) from all scans and their attributes, including
the extracted features and the corresponding demographics
(age and gender) as well as their annotations, including a
label of their brain status (e.g., PD or HC) and visits of scan-
ning MRI. Each subject has multiple scans if they have mul-
tiple visits. The formulated cohort data is used in the ML
learning pipeline described below. Note that we only use
the label and extracted features to train the ML models,
while the demographics and visit dates provide context
when displaying the ML results.

4.3 Machine Learning Pipeline

The goal of our ML pipeline is to guide the user to effec-
tively explore the data by providing measures of saliency
for each feature, region, and subject (DG1). The feature
saliency indicates how strongly the corresponding aspect
(e.g., fiber length) relates to, for example, the differences of
scans with different labels (i.e., PD or HC).

The ML pipeline, corresponding to “Salience Guided
Exploration Interface” in Fig. 2, is described in detail in
Fig. 3. The pipeline’s input is the cohort data generated in
Section 4.2 and the outputs are feature scores, region scores,
and subject/scan class probabilities. The whole pipeline is
executed inside CV iterations. In each CV iteration, we exe-
cute feature ranking and binary classification to obtain the
saliency measures. Then, we produce the averages and stan-
dard deviations of the scores over all iterations as the final
outputs. In the following, we describe the details.

4.3.1 Cross-Validation (CV)

Over-fitting a model to data samples can reduce its gener-
alizability to an unseen population. The severity increases
with data complexity and limited size. For example, more
features create a greater risk that by-chance fluctuations
could discriminate target labels [79]. An over-fitted model
learned leads to what is called generalization error due to
variance. On the other hand, an under-fitted model reduces

the error due to variance but increases what is called gener-
alization error due to bias. The conflict between these two
error terms is called the bias-variance trade-off. This issue is
an important factor for designing our ML pipeline.

Estimating generalization error (i.e., validation) is done
by resampling data into separate test and train samples.
Bootstrapping (repeated sampling/testing with replace-
ment) is a good variance estimator; however, it tends to
poorly estimate bias. Another approach is CV, which sam-
ples without replacement. k-fold CV is a popular variant,
which splits data uniformly into k subsets and rotates their
role as a test set ðk� 1Þ times. CV is good to estimate bias
but tends to be sensitive to variance due to a dependency
on the partition. Stratification (optimizing representative-
ness between subsets) helps reduce this sensitivity. Another
CV variant, repeated randomized test-train split, improves
variance estimation. For neuroimage data, this variant has
shown to work better than k-fold CV [80]. This makes sense
since variance is a major problem in neuroimage data due
to high complexity and small sample sizes.

One of our objectives is subject-level exploration (DG1)
using probabilistic predictions. However, both bootstrap-
ping and repeated randomized CV cannot guarantee that
each scan appears in a test set an equal number of times.
Standard k-fold CV guarantees this but may suffer from
sensitivity to variance (which is a particular problem in our
domain). For these reasons, we use an extension of k-fold
CV, which is performed t times with randomization, result-
ing t� k iterations in total. This allows equal testing of scans
(t� ðk� 1Þ each), and also supports good modeling of the
error due to variance.

Fig. 3. The ML pipeline. The top is the input of the ML pipeline, which is
the matrix for each brain region. The middle is the core of the ML pipeline
that executes binary classification in each fold of k-fold CV. The bottom is
the output of the ML pipeline, which are feature scores, region scores,
and subject/scan class probabilities.
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Choice of k determines the relative sizes of test and train
sets at each CV iteration; a smaller k results in a lower repre-
sentation of the variance in a test set but increases the repre-
sentativeness of the variance in a train set. A larger k also
results in more overlaps in the train sets between each CV
iteration. The larger train sets tend to give a better estima-
tion of the overall performance, and the overlap tends to
cause more consistency between iterations; however, in
turn, they may underestimate the variance (giving a false
sense of stability). When having a small number of samples,
it is also important that the test sets are representative,
which implies a small enough k should be chosen. Based on
our goals, the literature, and experiment, by default, we use
k ¼ 5, which we have found to strike a good balance. We
also set t ¼ 10 as a default to add a sufficient randomization
effect while avoiding a high computational cost. k and t can
be adjusted within the system based on the user’s need.

4.3.2 Binary Classification

This stage relies on a binary classification model that learns
a function fðXXÞ ¼ ŷy, where XX is a matrix of the cohort data
(Fig. 1), with which rows and columns represent scans and
attributes respectively, and ŷy is a prediction as to the true
class labels, yy, that the scans belong to. In our case, we
obtain probabilistic predictions as to whether the scan
belongs to the disease (PD) or healthy (HC) group, which
are used as saliency measures representing an estimation of
how closely the scan exhibits patterns that are associated
with the disease in the given features. The probabilities are
then thresholded at 0.5 to obtain the binary prediction.

Since the input XX is a standard form that is compatible
with many classification models, we can use many different
models (e.g., SVM, decision trees, and neural networks). As
a default model and the one used through this paper, we
use a linear SVM. This model is popular due to its high per-
formance with various data (including neurological data
[64], [81]), robustness against overfitting, and ability to
return class probabilities (rather than just predictions). With
all of these qualities, a linear SVM is a good model for our
domain and the objectives stated in DG1. One could also
train neural networks to take the images directly as inputs
rather than the extracted features. However, it is not clear if
such an approach would be an improvement and the results
become difficult to interpret since the features tend to be
more abstract. As our goal is to support further research
through exploratory analysis and hypothesis generation
rather than just prediction, we should be able to understand
the results and connect them to domain knowledge. This
importance of interpretability is also stressed by feedback
from experts (e.g., E4’s feedback in Section 5.2).

During the CV iterations, the model is trained on a train
set XXtrain, and tested on a test set XXtest. Instead of using all
the extracted features to train and test the model, we use the
top-m selected when performing the feature exploration to
avoid overfitting (see “Feature Exploration” described
below). The performance of the model is measured by com-
paring the class predictions ŷwith the true labels y.

1) Feature Exploration. As described in Section 4.3.1, learn-
ing from small-sample, high-dimensional data incurs a risk of
false insight. The more features you have, the larger the

chance that irrelevant noise patterns in the features correlate
with the targets in a training set. Oneway to address this issue
is through feature reduction. A rule of thumb is to use up to
between

ffiffiffi

n
p

and n features (note: n is the number of samples/
scans), depending on how correlated they are [82].
Dimensionality reduction is one way to reduce the feature
space. However, we use the given features as they are and dis-
card less useful ones (i.e., feature selection) when training the
model as these features are easier to interpret than ones pro-
duced by dimensionality reduction. One common feature
selection method is to use statistical significance testing
between each feature and the target class. These measures are
familiar to scientists and relatively easy to interpret. The
downsides are that multivariate correlations are ignored, and
the feature ranking can fluctuate widely between CV itera-
tions. Another popular method is recursive feature elimina-
tion, which eliminates one feature at a time if the inclusion of
the feature in the prediction does not improve the perfor-
mance. However, this approach may keep too many features
when they slightly improve the performance of the model
and the run time can be extreme. More importantly, it does
not provide saliency measures. Our objectives require
saliency measures—ideally stable ones. That is, the saliencies
should not depend toomuch onfluctuations in the data.

Ensemble-based methods fulfill these requirements [83].
We specifically use Extremely Randomized Trees [84], a
variant of random forests with added levels of randomiza-
tion to reduce sensitivity to variance. As in Section 4.3.1, the
features are scored within the CV iterations. Finally, the
averages and standard deviations over all CV iterations are
used for prioritized VA and uncertainty awareness. Based
on this average score, we rank the features. We also utilize
the ranks to select the top-m features that are used to train
and test the linear SVM. Also, we report p-values from the
Mann-Whitney U test (a non-parametric test of statistical
significance). The feature scores and their uncertainties pop-
ulate the feature exploration module as a table view (Fig. 2
C). The user can then investigate individual features with
the other linked views by selecting them from this view.

2) Brain Region Exploration. After the stages above, the
averages and standard deviations of classification perfor-
mance have been obtained for each of the feature sets
derived from the different brain regions. These measures
are displayed in the table view to guide exploration (Fig. 2
C and 4 D).

Since each region has its own set of features and feature
saliency measures, when a region is selected, all other
related views are updated (e.g., the feature exploration
module). One design consideration is whether to compute
the saliencies for all regions at once or on demand. To make
the VA process interactive and support easy non-linear
exploration (DG4), we choose to do it all at once as this way
can avoid waiting time when the user interactively explores
different brain regions. The whole computation is done in
parallel at a process level, with each process evaluating a
separate region. Runtimes are reported in Section 5.3.

3) Across-Subject Exploration. The average predicted class
probabilities and their standard deviations over all CV itera-
tions are also shown in the table view and guide across-sub-
ject exploration. This can aid the comparison and
hypothesis generation (DG3) in a number of ways,
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including: model failure (why some scans do not fit the
model, possible confounding conditions), model success (an
obvious case of neurodegenerative expression might be
found), model ambiguity (subtle expression might be found
through VA or different features might be needed to disam-
biguate these subjects). In addition, we want to explore the
same subject’s expression across time. Changes in predic-
tion across time can guide clinical analysis and disease
progression.

Informing Prediction Uncertainty. Informing uncertainty of
the prediction is important when performing VA with ML
to avoid gaining false insight. In the overall model perfor-
mance view (Fig. 2 B), we display a receiver operating char-
acteristics (ROC) curve. The ROC curve is used to assess the
effect of the prediction threshold on performance character-
istics. We also display the standard deviation of this curve
over all CV iterations, which is useful for assessing the

overall sensitivity of the model to train sets. After assessing
these measures, the user can collapse each view to expand
the screen space of the views for the exploration modules.
Also, as mentioned, we display the standard deviation of
each of the saliency measures in the exploration modules.

Plot Views. Each of the table views can alternately be
visualized as charts (Fig. 4) to graphically convey the infor-
mation. The table and plot views can be toggled by clicking
the corresponding tab at the top of each module. As shown
in Fig. 4, we use a conventional bar chart with an error bar
representing a standard deviation and sort bars based on
their length (i.e., feature: rank, region: mean accuracy, sub-
ject: mean prediction probability). In the subject exploration
module (Fig. 4 A), we further show a glyph that color-codes
a subject’s label (orange: PD, green: HC) and encodes a cor-
rect/incorrect prediction using a different shape (circle: cor-
rect, triangle: incorrect). Additionally, the glyph’s outline
color encodes the currently selected subjects (blue, red: sub-
jects visualized in the left and right fiber views, respectively;
black: mouse-hovered subject in any view). To encode mul-
tiple scans/visits corresponding to the same subject, we
connect the corresponding rows with lines in the order of
their visits for the selected subjects. When a subject has mul-
tiple visits, to encode the order, while we apply the same
outline color scheme stated above (blue, red, or black) to the
last visit, we use a gray outline for the first visit and no out-
line color for the other visits. As shown in Figs. 4 E and F,
the same glyph is used for the 3D fiber rendering and the
linked information visualization modules. Also, in the sub-
ject exploration module, the user can group rows based on
subject ID (Fig. 4 B).

4.4 Visualizations for Comparative Analysis

The comparative visual analysis (DG3, Fig. 2 D and 2 E) is
performed with fiber rendering and linked information
visualization modules. These views show the information
related to features, regions, and scans/subjects of interest
that are selected from the exploration modules.

4.4.1 Fiber Rendering

The brain fibers are rendered (Fig. 5) as path tubes with
SSAO, which produces a high-quality visualization with an
enhanced spatial perception [35], [36]. The path tubes are
constructed on the fly through the GPU rendering pipeline
in the geometry shader. This allows the path tubes to be
constructed and rendered quickly with an interactively
adjustable radius without additional memory overhead.
The scans/subjects, regions, and features selected from their
respective exploration modules, automatically determine
which fibers are rendered and which features are used for
color mapping. For example, when one brain region is
selected, this view only renders the fibers related to the
selected region. In addition to direct color mapping without
value scaling, we provide two scaling options: contrastive
color mapping—using the difference from the mean value
of all the given measures in a specific brain region over the
entire HC group—to emphasize anomaly and logarithmic
scaling to better reflect subtle value differences. However, it
is important to understand that one cannot find a direct
fiber-to-fiber correspondence between subjects. These

Fig. 4. The plot views of the exploration modules and across-view encod-
ings. (A), (C), (D) are the plot views for the subject, feature, region explo-
ration modules, respectively. In (B), by clicking the checkbox, ‘Group
Sub.’, the order of rows is updated to group the same subject. In the 3D
fiber rendering (E) and linked visualization (F) modules, the same glyph-
based encoding with the subject exploration module is used.
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design decisions reflect DG2 by providing a high-quality
visualization of fiber-microstructure with interactive frame-
rates for large sets of brain fibers.

The 3D fiber rendering module facilitates comparative
analysis together with the linked information visualization
module. To aid comparison, we provide two views (as
shown in Fig. 2 E) and use the same colormap across all the
selected scans from the other modules by referring to a
global value range across the scans. Also, the contrastive
color mapping helps supports the comparison of the indi-
viduals against the HC group, which may better emphasize
important differences. The two views’ viewports can be syn-
chronized to pan, rotate, and zoom together. The module
also shows the subject information, such as ID, age, gender,
and label, as shown in Fig. 2 E. In addition, the bar chart
placed at the top-right of each view (Fig. 2 E, Fig. 4 E) shows
the mean value of the selected feature for each scan/visit.
The bar chart also shows two different dotted lines. The
blue line represents the average of the HC group while the
black line shows the standard deviation.

4.4.2 Linked Information Visualization

We include a set of linked information visualizations to sup-
port various comparisons. This includes the scatterplot, par-
allel coordinates, dimensionality reduction, histogram,
trend, covariance matrix, and correlation matrix views.
These views depict the relationships/distributions among
selected attributes (including the extracted features, demo-
graphics, predicted class probabilities) and/or scans. For
example, the parallel coordinates view informs multiple
selected attributes’ values for each scan while the
dimensionality reduction view depicts each scan’s similar-
ity computed based on the attributes’ values as the spatial

proximity. The implemented views provide commonly
used visualizations (e.g., a heatmap showing a covariance
matrix). We demonstrate the usage of these views in the
case studies in Section 5.

While we use a standard visualization for each view, we
design a method to decide the order of features shown in
the parallel coordinates, covariance matrix, and correlation
matrix as the order is important to help the user visually
find patterns [85]. We apply hierarchical clustering to group
correlated features using the Louvain community detection
algorithm [86]. The same sorted order is applied to all the
three views to assist the mental map [87].

5 EVALUATION

To evaluate our system, we provide case studies, expert
feedback, and performance evaluation.As with Section 4,
we use the PPMI database [68] for our evaluation. Five
experts (E1–E5) with different professional backgrounds are
involved in the evaluation of our system. E1 is a radiologist
who focuses on 3D visualization of medical images and
brain disease analysis of high-resolution brain fiber tracts.
E2 is a neurologist who specializes in treating motor disor-
ders, such as stroke, PD, and epilepsy. E3 is a physician of
neurology, mainly engaged in cerebral stroke and
Alzheimer’s disease clinical/research work. E4 is a neuro-
scientist with expertise in statistical analysis, tractography,
and neurodegenerative disease. E5 is a neurologist at a
children’s hospital specializing in diagnosis and treatment
of congenital nervous system malformations, and voxel-
based morphometry analysis of Huntington’s disease. E1,
E2, and E3 were involved in the case studies while E4 and
E5 only provided qualitative feedback. One challenge in
evaluating our system is that none of the consulted domain
scientists is an expert in all the three areas (brain fibers, PD,
and ML). We should also point out that we are not drawing
scientific conclusions about PD in our case studies. Instead,
we focus on demonstrating the usage of our system and the
types of insights it can provide.

5.1 Case Studies

We first provide background knowledge of PD, which is
required to understand our case studies, and then present
two different case studies.

5.1.1 Background Knowledge of PD

PD is a neurodegenerative disorder characterized by loss of
dopamine neurons in the substantia nigra (SN) brain region
[88]. The dopaminergic function of the nigrostriatal path-
way reduces with the depletion of these neurons as well as
the neural fibers that link the SN to other subcortical
regions, such as putamen and caudate [9]. Each region in
the midbrain is affected based on the anatomical correlation
with SN and the severity of the region reflected by the ana-
tomical relationship with SN. It is recognized to be a brain-
wide neurodegenerative process that spreads up from the
brainstem into the cortex, as originally suggested by Braak
and Braak [24]. PD also increases rapidly with age—while
low incidence before 50, most cases are found around 80
[89]. Once the fibers are detected by tractography, it is use-
ful to assess the diagnosis with the brain fiber pathways.

Fig. 5. Each column shows the whole brain and one bundle at the same
orientation. SSAO rendering achieves a shadow effect that enhances
spatial perception. (Left) diverging colors encode difference from the
mean of the HC group. (Right) direct color mapping.
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5.1.2 Study 1: Exploration of the SN Region

Based on the background knowledge of PD, we decide to
explore fiber bundles with streamlines starting from the SN
region; our focus is on trends with age and on spatial fea-
ture patterns from the elderly subgroups (where significant
symptoms have been reported). First, from the entire scans
we have, we investigate the relationships between age and
the average fiber length (AFL) in the SN region by using the
trend view in the linked visualization (Fig. 6 G). From the
right plot where we show the association between AFL and
age for each group and gender, we see a clear drop in AFL
in the elderly male subjects with PD.

From the trend above, we decide to review the elderly
subjects in more detail. To do so, we resample the dataset
into only elderly subjects (i.e., age 65–100), as shown in
Fig. 6 A. One issue is that we have limited scans in this age
group, including a significant lack of female subjects, as
shown in the distributions in Fig. 6 A. This helps notify the
limitations of the data and uncertainty implications before
proceeding in the ensuing exploration. For this analysis, we
decide not to use resampling that generates the balanced
age and gender distributions (which is supported by the
system) because this can produce a very small resampled
data when using with the restriction on age, and disallows
the detailed exploration of the discarded subjects. The ML
pipeline executes the linear SVM with the resampled data,
resulting in 76.1% average accuracy and 0.760 average F1

for the SN region over all CV trials (Fig. 6 B).
Afterward, we review the ranks of SN features with

Fig. 6 C-2. The high-rank features include the average fiber

length (AFL), the mode of the anisotropy (MO), the fiber
number (FN), and the raw T2 signal with no diffusion
weighting (S0), each for the entire SN (i.e., both inner- and
inter-connects) and the inner-connect fibers (e.g., AFL:
entire, SAFL (or self-connect AFL): inner-connect). With the
parallel coordinates view (Fig. 6 D-1), we show a general
value trend of the top-7 features. We observe that several
features’ PD group average (thick orange line) are outside
of the range of the HC group average plus/minus its stan-
dard deviation (the range between the blue dotted lines
around the thick green line). As AFL shows the most clear
difference between the PD and HC group average, we com-
pare its value distributions with the histograms (Fig. 6 D-3),
where the HC group tends to have higher values than the
PD group. Also, we show the scatterplot of AFL and the
prediction probability of PD (PrðPDÞ) to know the relation-
ship between AFL and the trained classifier (Fig. 6 D-2). A
linear-decreasing trend seen in the plot clearly suggests that
the trained model exploits a correlation between PD and
AFL.

To review the differences in the fiber tracts between PD
and HC subjects, from the subject exploration module
(Fig. 6 C-3), we select each group’s representative subject
who has the high prediction probability and are predicted
correctly. We first compare their AFL values with the con-
trastive color mapping, as shown in Fig. 6 E. The HC sub-
ject’s nigrostriatal fibers are mostly light red, indicating
higher than the average length, while the PD subject has
more blue fibers, indicating lower than the average length.
We also compare S0 values (Fig. 6 F), which is a feature of

Fig. 6. Performing Case Study 1 with the VA system. Here we show the cohort selection (A), ML (B), exploration (C) (1: region, 2: feature, 3: subject),
linked information visualization (D)(G) , and 3D fiber rendering modules (E)(F). The information visualization module is used to show the parallel
coordinate (D-1), scatterplot (D-2), distribution (D-3), trend (G) views. (E) and (F) shows the fiber tracts colored by AFL and S0 values, respectively.
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DTI and frequently used for white matter analysis [90], [91].
Here, the PD subject’s S0 values around the center of SN
(annotated with the dotted-black ellipses) are higher than
those of the HC subject. Also, the information of the sub-
jects’ multiple visits (at the top of each view) shows these
subjects have fairly consistent values across their visits.

E1–E3 provided positive opinions on the functionalities
used to explore the patterns of SN fibers and expressed the
intuitiveness of the 3D fiber rendering module to under-
stand the feature value differences. They pointed out that
the phenomenon of nerve cell death in the SN region with
the age and disease progression is reasonable. They also
reminded us that this is a manifestation of PD but may not
help explain the underlying mechanisms of the cause of PD.

We also note the limitations of this case study. Based on
the findings from existing works, we originally expected the
SN regions could show significant differences between PD
and HC (even in any age group). However, with the data
we used, we were only able to find the clear differences in
the elderly groups. As we selected a small age range, this
analysis might do not include sufficient subjects to make
confident inferences. Also, we find high variation in
the fiber features among individuals, making concluding
the clear associations difficult. These problems would be
addressed in further work when having a larger collection
of data. Beyond the microstructural differences of the
nigrostriatal tracts in PD subjects [9], T2 hypointensity has
been reported as a sensitive measure that is caused by the
iron accumulation in the substantia nigra in PD [92]. Low S0
values can be a sign of high iron concentrations. In the data
we used, we found that the overall PD group has a lower
mean value of S0 in the SN region except for some outliers

with higher values. Even though our analysis result is
inconclusive, the gained insights could be useful to direct
further research with hypothesis generation. For example,
E3 said that the iron accumulation in one’s brain may be
caused by many different factors but its associations to the
pathogenesis of PD are not known yet. To study the rela-
tionships with PD, it is worth investigating how the iron
has accumulated.

5.1.3 Study 2: Exploration Based on the ML

Suggestions

Unlike the first case study, we analyze the data while fully
utilizing the saliency measures produced by the system and
do not rely on the assumption from past knowledge (e.g., in
the first study, we have focused on the SN region). We are
interested in exploring the brain regions that our system
indicates the best predictors of PD, the top-performing fea-
tures in those regions, detailed patterns of those features in
the physical space, and then trends with age and gender.

We begin by applying the ML pipeline to the entire data,
including 68 PD and 68 HC subjects (their age and gender
distributions are shown in Fig. 7 A). The resultant overall
prediction accuracy is 70.1% and F1 is 0.701 (Fig. 7 B). The
saliency measures for the three modalities are displayed in
Fig. 7 C. In the region exploration module (Fig. 7 C-1), the
system suggests that the fusiform region (FG) is the best
predictor. Thus, we select FG to explore the saliency meas-
ures of features within FG. From the result shown in Fig. 7
C-2, the top-salient feature within FG is the mean of the
mode of anisotropy (MMO). The mode of anisotropy (MO)
is a shape metric representing diffusion patterns. We should

Fig. 7. Performing Case Study 2 with the VA system. All the views are the same with Fig. 6 but show the information related to Case Study2.
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note that, during an interactive exploration, we observe that
MMO is the top-salient feature for many other regions and
the whole brain. This can happen because the decrease of
MO is often used as one of the indicators of PD [93].

We move on to the group-level analysis using the linked
information visualization module. We first use the parallel
coordinates (Fig. 7 D-1) to see the trends of the top-11 fea-
tures selected from the feature exploration module. For all
the features, we can see a high variation among scans (one
scan is represented as one polyline in the parallel coordi-
nates). While we can see many overlaps between PD and
HC for most of the features, MMO placed at the far left
shows a clearer difference between them (many PD subjects
have a higher MMO value). From the scatterplot of MMO
and PrðPD) (D-2), we can see a positive linear trend with a
relatively clear separation between PD and HC, indicating
MMO is a relatively good indicator of PD.

Afterward, we select multiple subjects from the PD and
HC groups to compare their difference with the 3D fiber
rendering module. As we have already found the PD group
tends to have higher MMO values (as shown in Fig. 7 D-2),
here we further inspect MO values in a fiber level. We find
that some HC subjects with a low mean MO tend to have
more fibers around the area annotated with the dashed-
black ellipse in Fig. 7 E (note that while we only show one
example here, we see other subjects have a similar pattern).
Another common structural characteristic is that some PD
subjects have fewer fibers between the occipital and parietal
lobes (i.e., the area annotated with the green arrows in Fig. 7
E). This is an interesting finding for further investigation
because the reduced fiber density connecting between the
occipital and parietal lobes has been suggested to be a possi-
ble sign of diseased brain atrophy in PD [94].

Besides focusing on FG, we also visualize the whole
brain colored by MO (Fig. 7 F). We notice that the PD subject
shown in Fig. 7 F (who has a high MMO) has an area filled
with high values (dark red), as annotated by the green color.
Such areas where high MO values are dominant could
highly influence the prediction performed by the ML model
and could be also the source of higher MMO values in the
PD group. In the physiological sense, the different distribu-
tions of MO intensity indicate different patterns of water
diffuse in different parts of the brain; however, imaging
issues could also affect these tensor measures.

We further investigate to know whether or not those
areas are the source of the higher MMO value. Through
exploring multiple subjects in the 3D fiber rendering mod-
ule, we identify that the higher MMO is not caused by hav-
ing slightly higher MO values across all areas but by having
some specific areas with extremely higher MO values (as
with the area annotated in Fig. 7 F). This finding highlights
that examining the tensor measure value differences by
areas is important to interpret the ML results and also to
know the structural differences between subjects. Such an
analysis is greatly aided by using the 3D fiber rendering
module, as we have demonstrated above.

Now, we analyze the relationships among MMO, age,
and gender with the trend view, as shown in Fig. 7 G. From
Fig. 7 G-1, we can see the PD group has a higher MO than
the HC group. However, as shown in Fig. 7 G-2, the trends
of the male and female subjects show different patterns: the

male group has the decrease of MO by age for both PD and
HC while the female group has the opposite increase trend.
However, the limited amount of data (especially, the elderly
female PD subjects, as discussed in the first case study)
makes this insight highly uncertain; thus, a further investi-
gation would be needed to confirm this finding.

E2 showed interest in the above findings. Clinically, PD
mainly has five symptoms: dementia, impaired balance,
slowness/bradykinesia, stiffness/rigidity, and resting
tremor. Each patient has one or more symptoms and their
symptoms are different. The loss of connection between the
occipital and parietal lobes may be related to one symptom
(e.g., impaired balance) while the areas with high MO val-
ues may be associated with other symptoms. Also, the
experts suggested co-analyzing the MO feature with the
fiber loss. These two features can be utilized to characterize
the different stages of PD as their co-joint value distribution
tends to show certain different patterns between the cases
where a PD patient has and does not have the impaired
balance.

5.2 Expert Feedback

As stated, to help evaluate our work, we sought feedback
from the experts in related research fields, including statisti-
cal analysis of neurodegenerative disease, brain tractogra-
phy of MRI images, and diagnosis and treatment of PD.
Our team members conducted live interactive demos for
each expert, and also shared a draft of our manuscript, and
then assimilated the feedback into our design and paper.

We added several functionalities based on the interac-
tions with the experts. For example, we implemented the
trend view (e.g., Fig. 7) based on E1’s request to investigate
how age and gender affect the disease. Also, while we origi-
nally used statistical significance testing as a feature ranking
method, we changed to utilizing Extremely Randomized
Trees, as discussed in Section 4.3.2. Besides the advantages
discussed already, part of the motivation is that significance
testing can be easily misused and should be performed
under careful experimental settings. The scores from
Extremely Randomized Trees, on the other hand, can be
simply interpreted as a relative score to rank features while
this approach is effective as shown in the performance of
the classifier. However, E3 told that they would still like to
see p-values. In their field, the t-test is commonly used;
however, it depends on the assumption of normality, which
is not guaranteed to hold for our extracted features. Thus,
instead, we selected and incorporated the Mann-Whitney
U-test, which is a non-parametric statistical significance test
that has fewer assumptions and does not require normality.
However, we still want to emphasize the importance of
careful interpretation of the testing result. Some experts
expressed that they were distracted by the classification per-
formance charts, which we only use when assessing the ML
performance. Therefore, we made these charts collapsible.

E4 and E5 described their thoughts on general research
challenges and directions related to our work. E4 stated that
since the fiber-based analysis of neurodegenerative diseases
is still in the early stages, current research in their field is
highly exploratory. Advanced methods such as fiber trac-
tography are being actively studied and showing a promise
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for scientific discovery; however, the complexity and uncer-
tainty they might face when using these methods “scares
away some researchers” (E4). Based on E4’s experience, due to
those complexities and practical difficulty in the compari-
son of many different individuals’ fiber tracts, the research
focus tends to rely more on statistical comparisons (e.g.,
DTI measures averaged for each region). For E4, those fiber-
tract-based analyses are usually only initiated to investigate
outliers. Overall, E4 stated that our VA system would
enable them to frequently perform a practical qualitative
analysis of the fibers. Also, using ML to guide an explor-
atory VA is a new approach to them, and E4 expressed con-
cern about a lack of ML knowledge in many neuroscientists
to understand ML models and parameters. E5 stated our
VA system is innovative and useful as a research tool
because it helps study neurological disease from a new per-
spective, such as the morphological aspects. However, in
clinical practice, E5 expressed that only well-understood
and standardized markers can be translated into actionable
insights. E5 also suggested that the system can be more use-
ful for clinicians by avoiding asking them to use the pipeline
by themselves and assigning ML experts to hospitals to
properly utilize the ML pipeline. Also, as some biomarkers
are critical in diagnosis and disease evaluation, E5 sug-
gested that a promising next step could be analysis of co-
occurrences of those markers and tract-based features; then,
in the future, to achieve better diagnosis and evaluation,
those tract-based features would be added as additional
index variables in multi-modal disease severity grading sys-
tems. We consider that these experts’ comments are insight-
ful and would be useful for VA researchers to plan their
future work.

5.3 Performance

We evaluate the computational performance of our ML
pipeline. The most expensive computation in each CV itera-
tion is the feature ranking using the Extremely Randomized
Trees. The feature ranking’s runtime highly depends on the
number of trees/estimators to use. While the system uses
150 trees/estimators by default, this number can be as high
as 1,500 to provide better results. CV parameters, the num-
bers of folds, k, and trials, t, are also linearly correlated to
runtime. We test the performance with multiple settings
and the full set of data (136 subjects). We train linear SVM
with the top-

ffiffiffi

n
p

ranked features. As an experimental plat-
form, we use a machine running Arch Linux with a 3.60
GHz Intel Core i3-9100F and 32GB of DDR4 memory
clocked to 2133 MT/s. With the default parameters (150 esti-
mators/trees, k ¼ 5, t ¼ 10), the runtime is 42 seconds.
When using 1,500 estimators/trees, k ¼ 10, t ¼ 10, the run-
time is 325 seconds. These runtimes are reasonable as the
execution of this pipeline is only required once (unless
resampling is performed) and does not impact the interac-
tive exploration.

6 DISCUSSION AND LIMITATIONS

The ML approaches and features we use have been veri-
fied by researchers in neuroscience [10], [11], [12], [25].
Direct visualization of features over individual fibers
can alert underlying issues in the use of the averaged

features for group-level comparison (as we have demon-
strated in Section 5.1.3). This fiber-tract visualization
also provides non-trivial physiological explanations that
could enhance the current understanding of neurodegen-
erative diseases.

As one gains insight into the important structural pat-
terns, a rational next step would be to develop formal-
ized descriptors that could be automatically extracted
from the data. Currently, qualitative analysis through
visualization is used to investigate the differences
between individuals’ brain structures, but those differen-
ces may not turn out to be statistically significant upon
group-level analysis. One direction for further research is
toward spatially invariant feature localization and extrac-
tion using deep neural networks; however, while utiliz-
ing visualization, we should address the problems
incurred by complex ML models, such as explainability,
ease-of-use, and standardization.

Another limitation comes from issues with data assimila-
tion. Our current system requires all brain data to be gener-
ated using identical imaging parameters and processing.
With more reliable techniques to assimilate data from differ-
ent sources, we could greatly expand the amount of data
that could be used together. With larger data, narrowing
down significant differences would be easier. Similarly, we
would be able to perform more fine-grained fiber-tract-
based analysis as well as higher confident group analyses
(e.g., based on age and gender). Since the state of the art in
tractography is actively evolving, in the future, there should
be more standardized and well-understood methods in use,
which will appease researchers who wish to compare
results between studies and understand and judge the anal-
ysis results with high confidence. It is noteworthy that cur-
rent tractography can be computationally expensive. With a
mid-range workstation, it took us about 60 days in total to
process about 190 brain scans using a mid-range worksta-
tion. Faster implementations utilizing acceleration hard-
ware, such as GPUs, will tremendously benefit the field. In
addition, a large amount of storage space is needed to store
the data. For example, each subject’s data, including the
fiber tracts and their feature measures, has the size of sev-
eral gigabytes.

7 CONCLUSIONS

Our system can effectively facilitate a deeper physical inves-
tigation into the statistical measures that are used by
researchers to study differences between healthy control
and neurodegenerative disease groups of DTI fiber tracts.
The efficiency of the investigation is increased through intel-
ligent guidance in the exploration process using predictive
modeling, while comparative analysis is enhanced through
customized interactive visualizations that are directly
linked with each other and the predictive modeling pipe-
line. This set of visualizations helps provide better context
to the observed differences by simultaneously expressing
multiple comparative modes for analysis and emphasizing
uncertainty. This approach can benefit neurodegenerative
disease researchers by helping them easily gain a wide per-
spective into their data as they search for insights through
an exploratory analysis process.
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