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Abstract Temporal evolving set data are time-varying and growing ubiquitous in person re-identification,
parameter choice, and streaming data analysis. We construct a workflow to analyze and explore the
inconspicuous pattern between multiple nonadjacent sets in temporal evolving set data. We propose a
progressive timeline layout algorithm based on a mathematical optimization model to place the set element
after data update, our layout algorithm can calculate the coordinates of elements in a short time and preserve
the distance ratio between elements. To relax the visual clutter when visualizing sets’ relationships, we
design two types of pattern enhancement strategies and their combinations: optimization-based pattern
enhancement strategy and design-based pattern enhancement strategy. We conduct a comprehensive eval-
uation to verify and compare our pattern enhancement strategies including a quantitative experiment, two
case studies, and an informal user study. The results show that our pattern enhancement strategies can
effectively help users identify inconspicuous patterns. Our workflow and strategies show broad application
prospects and we hope it could be a fundamental component in data projection pattern mining and streaming
data analysis.

Keywords Temporal evolving set data � Pattern enhancement strategy �
Progressive timeline layout algorithm

1 Introduction

Data projection is a widely used technique in data visualization for reducing data dimension, refining data
feature (Chang et al. (2022)), and summarizing data information (Sun et al. (2013); Nonato and Aupetit
(2018)). The most commonly used visualization form to represent data distribution after dimension
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reduction is scatter plot (Espadoto et al. (2019)). Since large-scale data bring visual overlapping to scatter
plots, many papers aim to highlight the pattern or structure of the scatter plot to explore data distribution.
However, in temporal data, the pattern of projection scatter plot always changes over time. In order to track
this dynamic pattern, many papers aim to track the evolution of structure, trends, and outliers of scatter plots
(Xia et al. (2018)). Outliers exploration, as an important part of projection mining, could help users better
understand and enhance temporal evolving set including increasing or decreasing the number of items.

Most researchers implement studies and track the position change of points in fixed sets. However, most
outliers do not appear or disappear at the same time. In other words, the elements in the outlier set tend to be
changed with time varying, which conforms with the real data characteristics in actual scenarios, such as
streaming data analysis (Keim et al. (2006)) and person re-identification (Yaghoubi et al. (2021)). For
example, person re-identification model would provide a person ranking list that conforms to the user’s
query. Limited by scalability, users only focus on Top K data points. Furthermore, due to the change of data
and user’s query, the set of points would change drastically over time. Another example is streaming data
analysis (Krstajić and Keim (2013); Dasgupta et al. (2018)), due to the dynamic characteristics of streaming
data, the data element of dataset is usually time-varying or unfixed. It is difficult to analyze the incon-
spicuous pattern between data in two nonadjacent times. It is necessary to research visualization techniques
of this temporal evolving set to help users realize its evolution and pattern.

Noted that a temporal evolving set has two basic characteristics. The first is time. Since the temporal
evolving set changes over time, the set is evolving means that the elements in set increase or decrease
frequently. It is necessary to display the information of the time dimension. We utilize the layout based on
the timeline to display the set evolution from the horizontal direction. The second is the relationship
between sets such as intersection set. The intersection set contains points in both two sets which could be
important for users. For example, researchers in evolutionary set theory focus on the evolution of dynamic
sets and their relationships (Tarnita et al. (2009)). One of the similar data structures is dynamic graph
(Sizemore and Bassett (2018); Beck et al. (2017); Burch et al. (2021)). However, the temporal evolving set
is different from the dynamic graph, although dynamic set can be seen as a special type of dynamic graph,
the relationships in dynamic graph are those links between nodes at the same time. The dynamic set does not
have links between elements in set at the same time but the intersection of sets can be seen as the
relationships over time in temporal evolving set.

The typical example of the temporal evolving set is time series data or streaming data because these data
contain time information and could map them as a temporal evolving set. As for the non-temporal data,
temporal evolving set data could be extracted along with the interactive analysis process. Suppose that we
have such a scene about data projection. In multi-dimensional data analysis, we usually need to try different
methods and parameters. Then we may pay more attention to outliers, clusters, or points of interests. After
several attempts, the change of outliers generates a temporal evolving set. Noted that the original data does
not have temporal information, but the analysis process brings temporal information.

We utilize timeline-based visualization to represent the temporal evolving set because timeline-based
visualization could display the time-varying information of the set in a horizontal direction efficiently. We
propose a progressive layout optimization algorithm based on a mathematical programming model to layout
the elements in set after new data are generated. Meanwhile, we utilize curves to link the elements in the
intersection set of adjacent time. We do not link the elements by curves in the intersection set of two
timestamps which are not adjacent. First, if we link two elements in the intersection set of any two
timestamps, it requires OðN2Þ number of linked set pairs, where N is the number of timestamps. Second, it
will bring visual confusion and burden for users to explore relationships between sets. In order to make up
for this deficiency, we adopt two types of pattern enhancement strategies to highlight the links between the
selected two sets.

Pattern enhancement is a visualization technique to enhance or highlight the hiding and implicit pattern.
In this paper, we propose several strategies to enhance patterns between two selected sets including the
optimization-based and design-based pattern enhancement strategies. The former enhances implicit pattern
by relayouting the elements and the design-based strategy enhances implicit pattern by visual design based
on perception. We also discuss the combined strategies which utilize both two or more pattern enhancement
strategies. In order to verify our pattern enhancement strategies, we conduct an experiment to examine and
compare these strategies.

To summarize, the major contributions of our paper contain the followings:

• We design and implement a progressive timeline layout algorithm based on a mathematical optimization
model to position the element in set.
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• We propose optimization-based and design-based pattern enhancement strategies to highlight the
relationship between two selected sets which could be a fundamental component in timeline-based
visualization.

• We construct a workflow for temporal evolving set data visualization and conduct a comprehensive
evaluation to verify the core pattern enhancement part.

In the remaining part of this paper, we first describe the related work of our research in four parts in Sect. 2.
Second, we construct our workflow and analyze the tasks in Sect. 3. We then describe and implement our
progressive timeline layout algorithm and summarize our two pattern enhancement strategies in Sect. 4. To
verify our work, we conduct a quantitative experiment, two case studies, and an informal user study in
Sect. 5. In Sect. 6, we discuss our results, limitation, and future work. Finally, we summarize a conclusion
about our work in Sect. 7.

2 Related work

In this section, we discuss the related work from the following four aspects, including data projection,
dynamic set visualization, pattern enhancement, and timeline-based layout.

2.1 Data projection

Data projection is a process of data transformation from one space to another space. It could also be called
dimension reduction when project data from a high dimension to a low dimension. Data projection help
extract and refine the information from original data. There are many projection methods which are widely
used in data visualization such as MDS (Mead (1992)), PCA (Abdi and Williams (2010)), t-SNE (Van der
Maaten and Hinton (2008)), UMAP (McInnes et al. (2018)), and their variants. Espadoto et al. (2019)
survey and examine these dimension techniques from a quantitative aspect.

One of the most commonly used visualization after data projection is scatter plot, due to the massive
volume of data, scatter plot will cause confusion and ambiguity. However, many researchers aim to visu-
alize the global structure or trend of the scatter plot such as sampling the dense points in the scatter plot
(Mayorga and Gleicher (2013)), comparing differences between clusters (Eckelt et al. (2022)), or comparing
the different dimension reduction results by subspace (Sun et al. (2021)). For example, Mayorga and
Gleicher (2013) sample the dense points and group them into contours to visualize the closed shapes. Sun
et al. (2021) track and compare the sensitivity and difference of dimension reduction results in different
subspaces.

The other concern in projected scatter plot is outliers. Outliers usually represent those data that do not
obey the overall distribution of data. Visualization of outliers in scatter plot will help users find and realize
the meaning of outliers. For example, Sohns et al. (2021) utilize an augmentation strategy of projected data
and set visualization techniques to help users find outliers in scatter plots. Xia et al. (2018) propose three
metrics to measure the importance of points for outliers, clusterings, and trends.

2.2 Dynamic set visualization

Dynamic set visualization aims to visualize and present the dynamic evolution of set data and links between
elements in set temporally. On the one hand, dynamic set can be seen as a simplified dynamic graph without
edges between elements in set. Beck et al. (2017) bring an overall taxonomy and summarization of dynamic
graphs. Dynamic set visualization can be applied to dynamic graph visualization. On the other hand, graphs
and other structures such as hypergraphs (Fischer et al. (2021)), also can be seen as the combination and
integration of multiple sets including the set of nodes and edges.

Set visualization utilizes visualization techniques to represent the structure and relationship such as
difference between set (Alsallakh et al. (2016); Sadana et al. (2014)). Alsallakh et al. (2016) summarize an
overall survey of set visualization. In order to visualize the intersection set, UpSet (Lex et al. (2014)) utilizes
matrix layout and aggregation techniques to visualize intersection set. But they do not extend their tech-
niques to dynamic set visualization.

In dynamic set visualization, many researchers aim at tracking the evolution by visualizing set rela-
tionships such as Bubble Sets (Collins et al. (2009), TimeSets (Nguyen et al. (2016); Xu et al. (2020),
timeline-based visualization (von Landesberger et al. (2012), or optimizing animation between two
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timestamps (Mizuno et al. (2019)). For example, Bubble Sets use bubbles to represent the overlapping
relationship of sets and show the evolution of sets over time in the horizontal direction. TimeSets Nguyen
et al. (2016) employ groups to represent the same event between sets dynamically. von Landesberger et al.
(2012) visualize dynamic categorical data by timeline-based technique but lack of visualization of set
relationships. On the other hand, many researchers explore the relationship between sets and their elements
such as TimeSets (Xu et al. (2020)) and Set Streams (Agarwal and Beck (2020)). For example, Set Streams
represent the branching and merging process of set as streams to help compare element evolution in set.

2.3 Pattern enhancement

Pattern enhancement is a visualization technique that aims to magnify and highlight the implicit or
inconspicuous pattern in visualization. Although it may cause local distortion and deformation, it is nec-
essary to enhance the local or global hiding structure for users to realize and explore the visualization.

Pattern enhancement has many applications such as magnifying the area of landmine (Jayatilaka et al.
(2010)), reflecting cooperation and competition of social media (Sun et al. (2014)), embedding temporal
information in map (Sun et al. (2017)), or enhancing the local and global visual pattern (Cao et al. (2010)).
For example, Sun et al. (2014) add constraints in a layout model to enlarge the wiggle of the flow map.
Ankerst et al. (1998) formulate a linear assignment problem and reorder the dimension of multi-dimension
data to enhance and magnify the similarity pattern.

In order to enhance and magnify the hiding pattern in data, many techniques are employed such as
sorting by user-defined mission (Tatu et al. (2009)), integrating scatter plots into parallel coordinate (Yuan
et al. (2009)), visual deformation (Wang et al. (2019)), and machine learning methods (Yuan et al. (2021)).
For example, many researchers utilize focus?context technique and visual deformation to visualize the
structure more clearly, which can be seen as a type of pattern enhancement. Wang et al. (2019) employ the
fisheye technique in a large node-link layout to visualize the structure more clearly for pattern exploration.
Haunert and Sering Haunert and Sering (2011) draw the road map under local radial deformation which
could help users find routes in dense road map quickly. Similarly, Wang and Chi (2011) utilize focus?-
context technique to enlarge the focus region of the metro map. Other works (such as Fink et al. (2012))
enhance visual region by removing label overlapping.

2.4 Timeline-based layout

Timeline is a visualization form to represent the dynamic data in a vertical or horizontal direction. Many
researchers utilize timeline-based layouts to visualize the progression of events (Guo et al. (2019, 2018))
and storyline layouts (Tanahashi and Ma (2012)).

Storyline layout, as a typical timeline-based layout, attracts much attention for many researchers. Most
of their works optimize the storyline layout from an esthetic aspect. The basic metrics in storyline layout are
line crossings, line wiggles, distance, and space. Tanahashi and Ma (2012) layout storyline visualization by
minimizing line crossings and swings. Furthermore, they improve their methods and propose an efficient
framework to layout the storyline (Tanahashi et al. (2015)). Liu et al. (2013) propose an optimization
approach to generate an esthetically appealing storyline visualization.

One of the other timeline-based visualization forms is based on flow map. Flow map is similar to
storyline, it is often used to visualize temporal data and has many applications in social media data (Sun
et al. (2014)) and dynamic graphs visualization (Cui et al. (2014)). In the esthetic aspect, line crossings and
wiggles are also important metrics (Di Bartolomeo and Hu (2016); Bu et al. (2021)). Furthermore, Sine-
Stream (Bu et al. (2021)) improves the esthetic and readability of flow graph layout by minimizing sine
illusion.

Besides, other researchers modify timeline-based layouts and propose their variants such as SchemaLine
(Nguyen et al. (2014)) and timeline trees (Burch et al. (2008)). For example, timeline trees propose a
hierarchical timeline tree to visualize the progression of transactions in hierarchical data. Timeline-based
layouts usually employ esthetic metrics as their optimization objective and utilize mathematical opti-
mization to result in a fine layout.
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3 Task analysis

In this section, we introduce the basic workflow of our algorithm and refine the task analysis.

3.1 Workflow

As we mentioned in Sect. 1, the temporal data could fit our workflow and the non-temporal data could be
transformed to temporal data by interactive analysis process. As for the temporal data such as traffic
trajectory data or streaming data, we define different objects in data as elements in set. For example,
different cars in a zone each day could be defined as a temporal evolving set. As for the non-temporal data
such as multi-dimensional data, we could try different projection methods to analyze data and collect points
of our interests such as outliers. Then we regard this temporal point set as a temporal evolving set.

After the data preparation, we utilize timeline-based techniques to visualize the temporal evolving set
because the timeline-based visualization could adapt to the change and update of data. Therefore, we
employ a progressive layout algorithm to determine the node positions in timeline visualization. The
algorithm will be introduced in Sect. 4.

However, the timeline visualization changes constantly while the data are updating. To compare the set
in a previous time stamp and a current time stamp, the pattern enhancement strategies could bring a
significant visual effect and enhance the implicit pattern in a large number of nodes and lines in timeline
visualization. We summarize our workflow in Fig. 1.

3.2 Task

Alsallakh et al. (2016) summarize the basic tasks in set data visualization. Based on our workflow and the
temporal characteristics of temporal evolving set, we extend and summarize our tasks as followings:

T1. Analyze the process of generating and changing new elements in the temporal evolving set. Due
to the non-fixed characteristics of the dataset, we hope to display the new data points in the
visualization. In this way, users can analyze the process of generating new elements in sets while the
temporal evolving set is changing.

T2. Compare the differences between elements in the original and new set. Each element belongs to a
temporal evolving set. In two adjacent time stamps, visualizing the intersection between two adjacent
sets can help users to observe and compare the difference and changing process between them.

T3. Help comparison of two different sets with pattern enhancement strategies. When users select
and compare two nonadjacent sets, they could be disturbed by other set elements. To help users find
and compare the different two sets quickly. Our visualization should enhance and highlight the
implicit pattern in the timeline layout to help explore the difference between them.

4 Algorithm

We describe the algorithm of timeline layout in detail from two aspects, including progressive timeline
layout and pattern enhancement with user interaction.

Data Source

Data Processing

Temporal Evolving Set

Layout Algorithm

Timeline-based 
Visualization

Strategies Selection

Pattern 
Enhancement

Fig. 1 Our workflow about pattern enhancement in temporal evolving set data visualization. First, process data from data
source to extract temporal evolving set data. Second, utilize layout algorithm to generate timeline-based visualization. Third,
select pattern enhancement strategies to highlight the implicit pattern with users’ feedback for set comparison and exploration
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4.1 Data description

We denote the temporal evolving set as St, where the t represents the time stamp. Noted that St is a dynamic
set that changes with time and user operations, we need to distinguish the data subsets that change in St from
the previous time t � 1 and the data subsets that are fixed. We denote St ¼ Sto [ Stn, where S

t
o represents the

set of original points in the point set, and Stn represents the set of new points, it is obvious that Sto � St�1.
In order to represent the coordinate of points in St in layout algorithm, we denote the coordinate of points

in each St as yti, where y
t
i is a continuous variable. We denote the order of points in each St as xti, where x

t
i is a

discrete variable which is larger than 0.

4.2 Progressive timeline layout

The main idea of progressive timeline layout is that we do not change the order and coordinate of the points
in the previous time S0; S1; S2; . . .; St�1, when layout the positions of the points in St.

Our layout algorithm includes two steps: The first step is to determine the order of points in St, and the
second step is to scale the distance and determine the continuous coordinate of each points in St.

Determine the order. In the discrete layout, our goal is to keep the order of fixed points in Sto and insert the
new points in Stn. While inserting new points, we aim to make the original distance ratio of the new points as
harmonious as possible. We formulate the layout requirements as the following model:

min
X

i;j;k

Ifð xti�xtjj j� xti�xt
kj jÞðdij�dikÞ\0g

s.t.
xti\xtj where yt�1

i \yt�1
j 8i; j 2 Sto

xti 2 f1; 2; . . .; jStjg

8
<

:

ð1Þ

In model 1, the objective function contains an indicator function If�g which means the function takes 1 if and
only if the condition of the indicator function is true. In the model, xti takes a value between 1 and Stj j, and dij
is the distance between point i and point j on the projected image. Noted that when dij � dik and xi � xj

�� ���
xi � xkj j have different signs. For example, if dij � dik [ 0 and xi � xj

�� ��� xi � xkj j\0, the coordinate
distance of i, j is greater than i, k and the feature distance of i, j is less than i, k, which leads to an imbalance
between the coordinate distance between points and their feature distances, which is contrary to our goal. If
the feature distance of i and j is larger than i and k, the model could make the difference of point order
satisfy the feature distance order as much as possible.

The constraint in model 1 aims to keep the order of original points in Sto, it only works for points in the
set Sto which ensures they have coordinate in time t � 1.

The model 1 is a nonlinear programming model which has a nonlinear objective function and linear
constraints. Considering that the objective function in model 1 is cumbersome, we utilize linearization
technique and other decision variables to simplify the model, and solve it by Gurobi solver (https://www.
gurobi.com). Linearization technique can help us deal with indicator function when we program by Gurobi
interface. For example, in order to deal with the absolute value in the objective function, we define two 0-1
decision variables pij and qijk. pij is 1 if point i locates higher than j, otherwise, pij is 0. qijk is 1 if the
condition in the indicator function is true, otherwise, qijk is 0. By utilizing pij and qijk, we could rewrite the
objective function in Eq. 1 as followings:

min
X

i;j;k

qijk ð2Þ

where the Eq. 6 is a linear function which avoid the cumbersome form in Eq. 1. However, we need to add
new constraints to describe the relationship between xti and pij. The new constraints can be expressed as
followings:
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pij þ pji ¼ 1

xi þ 1� xj �Mð1� pjiÞ
ð3Þ

where Eq. 3 combines xti and pij. Similarly, the constraint which combines xti and qijk can be written as
followings:

pijðxj � xiÞ þ pjiðxi � xjÞ � pikðxk � xiÞ � pkiðxi � xkÞ�
Mð1� qijkÞ
dij � dik

ð4Þ

Combining new constraints and new objective function, we obtain a new nonlinear programming model
which could be accepted and solved in Groubi interface.

Scale the coordinate. After determining the order of points in St, we scale and compute the continuous
coordinate of points. We consider these three optimization objective functions.

• Ratio Objective The ratio objective function is an extension of the objective function in discrete
optimization. Given two points i and j, the ratio of the coordinate distance and the feature distance
between them can be written as

jyi�yjj
dij

. We aim to make the ratios between the different points to be as
close as possible. We use dt to denote the range of ratio and minimize it, the objective function can be
written as followings:

f1 ¼ max
i;j2St

f
jyti � ytjj

dij
g � min

i;j2St
f
jyti � ytjj

dij
g ð5Þ

where maxfjy
t
i�ytjj
dij

g is the maximum of the ratio for all point pairs in set and minfjy
t
i�ytj j
dij

g is the minimum of
the ratio for all point pairs in set. The less f1 could make the distance between point pair follow the distance
more in projected coordinate plane.
• Boundary Objective The boundary objective function aims to avoid the range of point coordinate to

become too large. It makes the range of point closer by these following objective function:

f2 ¼ max
i2St

fyig � min
i2St

fyig ð6Þ

where maxfyig is the maximum of the vertical coordinate of all points and minfyig is the minimum of the
vertical coordinate of all points. The less f2 could make the distance of between point pair closer.
• Wiggle Objective The wiggle objective function aims to avoid the wiggle of line between original points

in Sto. The wiggle objective is a classical esthetic metric and objective function in timeline-based layout
Tanahashi and Ma (2012). We describe the wiggle objective function as followings:

f3 ¼
X

i2Sto

xiðyti � yt�1
i Þ2 ð7Þ

where xi is the weight of original points to measure the importance of points. The less f3 could make the
distance between elements both in adjacent set closer.

Besides, we consider these two constraints including gap constraint, boundary constraint, and order
constraint:

• Gap Constraint The boundary objective function makes the distance of points closer. In order to avoid
visual clutter and interference caused by too close points overlapping, we establish gap constraints to
limit the minimum distance between points, which can be written as followings:

jyti � ytjj �Dmin 8i; j 2 St ð8Þ

where Dmin is the minimum of the distance between two points.
• Boundary Constraint The boundary constraint aims to layout the points in the height of the rectangular

canvas, which can be formulated as the following terms:

0� yti �H 8i 2 St ð9Þ

• Order Constraint The order constraint utilizes the result from model 1. We utilize these constraints to
preserve the order of original points by xti, we write the order constraint into the followings:
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yti � ytj þ Dmin where xti [ xtj 8i; j 2 St ð10Þ

where the xti in the above constraints is already determined by the discrete optimization model.

We combine the objective function and constraints as a multi-objective programming model, due to the
complexity of solving a multi-objective model, we use a weighted linear combination to simplify these three
objective functions as these followings:

min a1f1 þ a2f2 þ a3f3 ð11Þ

where a1; a2; a3 are the positive weight to balance the three objective functions. After several examination,
we choose 100, 0.01, 0.1 as their value. Because the ratio objective usually has a fewer range than the other
two objective functions. Finally, we obtain a quadratic programming model with linear constraint. Similarly,
in order to rewrite the objective function to fit the Gurobi interface. For example, we rewrite the Eq. 6 as
followings:

f2 ¼ z2 � z1 ð12Þ

where z1 and z2 are two variables, and we use them to limit the maximum and minimum of yi by the
following constraints:

z1 � yi � z2 8i 2 St ð13Þ

Similarly, we utilize the linear techniques to deal with the objective function of the model to fit the Gurobi
programming interface, then we solve the model by Gurobi.

4.3 Pattern enhancement

Timeline-based layout optimization aims to minimize curve wiggle and height from an esthetic aspect.
However, it may mask or hide some inconspicuous patterns from being discovered by users. One way is to
highlight these patterns in other views, but in order to take full advantage of the pixel space of the timeline
visualization, and consider the scalability of selecting multiple sets. We utilize pattern enhancement
strategies.

Pattern enhancement aims to highlight the implicit patterns in the layout. For example, when users hope
to compare two projection scatter plot in time 2 and 4, they find it is difficult. Because the original timeline
layout is progressive layout which only links the elements in intersection set of two adjacent time intervals,
which means elements in S2 \ S4 are easily ignored. In order to enhance these implicit patterns, we need to
enhance these patterns. Since we utilize a mathematical optimization model in timeline layout, we consider
pattern enhancement from optimization-based and design-based aspects. The taxonomy of our pattern
enhancement strategies is shown in Fig. 2. In this section, we suppose that we have already selected two
nonadjacent projection scatter plot and obtained two PoI set Sk and St, where t � k� 2.

Fig. 2 Pattern enhancement strategies. In optimization-based pattern enhancement strategies, we classify these strategies as
translation-based and constraint-based. In design-based pattern enhancement strategies, these strategies could be classified as
highlighting the same element and ignoring the extra element. Both optimization-based and design-based strategies could be
combined into multiple strategies
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4.3.1 Optimization-based pattern enhancement

Optimization-based pattern enhancement strategies optimize and highlight the implicit pattern by improving
and adjusting the constraint or objective function in mathematical optimization model. In order to optimize
the layout to enhance the mode, Sun et al. (2014) utilize an optimization-based method to enhance the
pattern. Inspired by their work, we summarize optimization-based pattern enhancement as followings:

Element Movement. In order to enhance the pattern between elements both in Sk and St, a feasible
method is to move these elements as close as possible in vertical direction. As the left figure shows, all
elements in set are moved down. However, the critical problem is how to align multiple same element in Sk

and St and compute the movement length. Therefore, we consider moving the whole set column to a
suitable position in vertical direction, the objective function of element movement optimization model can
be written as followings:

min max
i2Sk\St

fjyti � yki jg ð14Þ

where i is the element in the intersection set of Sk and St. The meaning of these objective functions is to
minimize the largest horizontal height difference of elements in the intersection set. We also utilize the
Order Constraint to preserve the original order of elements.

Element Alignment. Placing the same elements in the same horizontal direction could reduce the visual
burden when they find the same element. As the left figure shows, we align all elements in the intersection
set. Therefore, we need to utilize constraints to limit their coordinates. Considering the number of elements
in the intersection set may be more than one, we define a new 0-1 decision variable si, si is 1 when the
element is aligned, otherwise si is 0. We add the new constraints into the optimization model as followings:

�Mð1� siÞ� yki � yti �Mð1� siÞ 8i 2 Sk \ St ð15Þ

where the above constraints guarantee the alignment of elements when the decision variable is equal to 1,
and we add an objective function as followings:

max
X

i2Sk\St
si ð16Þ

where the objective function aims to align elements as much as possible, we also utilize the Order Con-
straint to preserve the order and Gap Constraint to avoid too close node distance.
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Element Reorder. Another way to enhance the pattern is to reorder the element for the late time t.
Because t and k are not adjacent time, the mathematical optimization model in Sect. 4.2 do not consider and
add constraints to limit their relationship. Therefore, we modify the model to relayout the elements in St by
the order of Sk. The Order Constraint in Eq. 1 can be rewritten as followings:

xti\xtj where yki\ykj 8i; j 2 St \ Sk ð17Þ

where the above constraint ensures that the elements in St follow the order of the elements in Sk. Then we
utilize the optimization model in Sect. 4.2 to scale the coordinate and get the final results.

The above three strategies are based on optimization, where the element movement strategy enhances the
pattern by modifying the objective function of the optimization model. The element reorder enhances the
implicit pattern by modifying the constraints of the optimization model. In particular, the element alignment
enhances the implicit pattern by modifying both objective function and constraints in the optimization
model. On the other hand, the element movement and element alignment are based on the translation of
nodes without changing the order of elements.

In fact, our optimization-based pattern enhancement strategies could extend to adapt to the case of
multiple sets. For example, suppose that the users selected several sets Sn1 ; Sn2 ; . . .; Snk , where n1; n2; . . .; nk
is an ordered index sequence, we can change the condition of the above three pattern enhancement strategies
as \

k

i¼1
Sni .

4.3.2 Design-based pattern enhancement

The design-based pattern enhancement highlight the implicit pattern by visual design. Visual design could
encode more information in visualization and save the time of solving mathematical optimization model,
which could spend a lot of time in the large-scale data. We summarize the designed-based pattern
enhancement as followings:

Curve Link. Drawing a smooth curve between two points is a direct and simple approach of design-
based pattern enhancement, which is shown as the left figure. In timeline visualization, we utilize a quadratic
Bézier curve to draw the links with elements in St�1 \ St between two adjacent timestamps. In order to
enhance pattern mined in dynamic sets, we draw a smooth curve in between elements in intersection sets
Sk \ St.
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Flow Link. Instead of curve link, another method for enhancing implicit patterns is utilizing shadow
flows to link the same element, which is shown as the left figure. We draw a flow for each element in the
intersection set. Each flow link two same elements in the selected set. The advantage of this flow is that the
width of each flow could encode the extra information such as the distance sum of element in different
times.

Bubble Link. Inspired by Bubble Sets (Collins et al. (2009)), we design the bubble link for highlighting
the element of intersection set, which is shown as the left figure. One bubble link the elements in the
intersection set which highlight the same element, and we draw bubbles for all elements in the intersection
set. The color and opacity of the bubble can encode the extra information of elements such as the importance
metric of elements.

Element Bundling. In order to enhance and highlight the extra element, we combine and bind the
elements in different set St � Sk, which means those elements in St but not in Sk. The grey bubble of extra
elements aims to help users ignore these elements and highlight the same elements. The disadvantage of
element bundling is that users may pay more attention to those bound elements.

In the above four pattern enhancement strategies, the former three strategies, curve link and flow link
highlight the elements by adding new graphics, the element bundling ignores and hides the visual distur-
bance which is caused by other elements not in the intersection set.

4.3.3 Multiple pattern enhancement

Combining two or several pattern enhancement techniques is a feasible scheme. In this section, we discuss
the combination of pattern enhancement strategies. Using multiple pattern enhancement strategies is not a
simple addition of these strategies, it may not enhance the implicit pattern or not work well.

Multiple optimization-based pattern enhancement.
The advantage of our optimization model in pattern enhancement is that we could apply multiple

optimization-based pattern enhancement strategies by integrating their objective function and constraints
into a unified optimization model. We discuss the combination of pattern enhancement strategies as
followings:

• Element Movement & Alignment Element movement moves the whole column in timeline visualization
while element alignment moves the intersection element in two sets. To combine these two strategies,
we need to balance their objective functions in Eq. 14 and Eq. 16 by an extra parameter to transform
them into a single-objective optimization model.

• Element Movement & Reorder In this combination, the constraints in Eq. 17 can limit the order of
elements in the intersection set. Eq. 14 is an objective function that is added to the optimization model
when scaling the coordinate. This combination would integrate their advantages.
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• Element Alignment & Reorder In element alignment, elements in two sets with inconsistent order would
not align. Combining with the element reorder, the element in the intersection set could reorder and align
fully.

Multiple mixed pattern enhancement. The design-based pattern enhancement strategies do not change the
optimization model. Therefore, it does not lead to failures. Multiple design-based pattern enhancement
strategies could highlight the implicit pattern more and encode more extra information. Combining
optimization-based pattern enhancement strategies and design-based pattern enhancement strategies could
integrate their advantages. For example, the curve link or flow link brings more line wiggles. Because there
are original line links every adjacent time pair between time t and k. However, element reorder could
decrease line wiggles by changing the order to avoid this visual burden.

5 Evaluation

In this section, we describe our evaluation about pattern enhancement strategies including quantitative
experiment, two cases studies, and an informal user study.

5.1 Experiment

To evaluate our layout algorithm quantitatively, we conduct a quantitative experiment. We use Gurobi
Solver (https://www.gurobi.com) in a computer with an Intel Core i7 processor and 16GB memory. We
compute the running time of the progressive timeline layout algorithm. The results are shown as followings:

In Table 1, the results of the quantitative experiment show that our progressive timeline layout algorithm
would cost more time when the data scale increase. Meanwhile, the fewer intersection elements result in less
running time. It fits our expectation because the positions of original nodes are not changed while layouting
new nodes at a late moment, which could be also seen as a local optimal algorithm.

Meanwhile, we compute the running time of three optimization-based pattern enhancement strategies.
We utilize these pattern enhancement strategies to adjust two nonadjacent time stamps. They both contain
twenty nodes. The results are shown as followings:

In Table 2, three pattern enhancement strategies cost less time than the progressive timeline layout
algorithm under the same data scale. The Element Movement needs the least running time because it only
adds an objective function. The two strategies need more running time because they add extra constraints to
the optimization model.

(a) Element Movement (b) Element Alignment (c) Element Reorder

Fig. 3 Results of optimization-based pattern enhancement strategies, there are three pattern enhancement strategies to
highlight elements in the intersection set between the first set and third set. (a) Element movement minimizes the largest
difference of horizontal height of each element in the intersection set. (b) Element alignment aligns elements in the same
horizontal line as much as possible. (c) Element reorder rearranges the order of elements in the intersection set
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5.2 Case I: tracking outliers in projection data

In the first case, we utilize a person re-identification query dataset, and extract the feature information in the
image ranking list after selecting a query. Then we utilize these feature vectors to project in different
methods and parameters. The feature vector is a 128-dimension vector, and we utilize MDS, t-SNE, PCA,
and UMAP. By examining different parameters and the top K feature vectors, we obtain the projected data.
Then we compute the distance between points in the feature dimension and projected dimension. We choose
the top 5% as outliers after ranking the points by the absolute difference of distance in feature and projected
dimension.

In this case, the multi-dimensional data before projection does not have temporal information essentially.
But the interactive analysis process, to track outliers in different projection, brings the temporal information
which could apply the timeline-based layout. We try several methods and record outliers. Finally, we utilize
our algorithm to layout the timeline visualization. The result is shown in Fig. 4.

In fact, different combinations of pattern enhancement strategies and different positions that applied
strategies both cause the huge number of our experiments. Due to the time limit, we only try three different
positions and several combinations of different pattern enhancement strategies. As for the single strategy,
we examine all seven strategies. As for multiple pattern enhancement strategies, we choose one opti-
mization-based pattern enhancement strategy and one design-based pattern enhancement strategy. There are
twelve combinations of them. We compare a part of the results and show them in Fig. 4, see the complete
results in our GitHub repository1.

The Fig. 4 shows that the optimization-based pattern enhancement strategies perform as our expect,
since the bubble link also highlight the elements in intersection sets.

5.3 Case II: Exploring location in spatiotemporal data

The second case utilizes the dataset of VAST challenge 2015 (2015), an example of temporal data. The
dataset contains millions of tourist position information in an amusement park on the weekend. We choose
the location information of tourists within ninety minutes on Sunday morning, and filter the twenty-five
tourists with the most location information. Then we divide the time period by ten-minute stamps and count
tourists in a fixed area in the park, where the area is one-quarter of the park area. As for the weight in
progressive timeline layout algorithm, we utilize similarity of tourists, the longest common subsequence
problem (LCSS) could be used to describe the similarity of location sequences in the temporal dimension
(Zheng et al. (2014)), we utilize LCSS to compute the similarity of tourist location sequences.

After processing the dataset, we utilize our progressive timeline layout algorithm to determine the
position of nodes. Each node represents a tourist in the park. Then we examine different pattern
enhancement strategies and their combinations to highlight the elements of intersection set in the fourth set
and sixth set. Four results of our strategies are shown in Fig. 5. In Fig. 5(d), we utilize moving distance in
ten minutes to encode the width of the flow. Due to the space limit, we show the other results in our
repository.

Table 1 Experiment results of progressive timeline layout algorithm

Node number 15 20 25 50 100

Constraints number 555 990 1550 6225 24950
Running time (s) 0.29 0.59 1.28 9.05 74.25

Table 2 Experiment results of optimization-based pattern enhancement strategies

Strategies Element movement Element alignment Element reorder

Constraints number 6 196 1435
Running time (s) 0.001 0.01 0.03

1 GitHub: https://github.com/zjutvis/PE-TESV.
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(a) Element Movement (b) Element Alignment

(c) Element Reorder (d) Bubble Link

Fig. 4 Case I: Tracking outlier in projection data. We attempt different methods and parameters to project multi-dimensional
data. Then we employ our pattern enhancement strategies to highlight the intersection element in the third column and fifth
column. Four subfigures show the effect of different strategies from origin (left) to new (right)

(a) Element Movement (b) Element Alignment

(c) Element Reorder (d) Flow Link

Fig. 5 Case II: Exploring location in spatiotemporal data. We extract temporal evolving set data from temporal data and utilize
pattern enhancement strategies to enhance the pattern in the fourth and sixth columns in timeline-based visualization. In each
strategy, the elements of the intersection set are highlighted from the origin (left) to the new (right). Each subfigure shows
different pattern enhancement strategies. We utilize the tourist distance in each time stamp to encode the width of the flow
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5.4 User study

To compare the effect of pattern enhancement strategies, we conduct an informal user study to verify our
pattern enhancement strategies. In the informal user study, we choose timeline-based visualization and their
result after applying each pattern enhancement strategy for users to compare the results.

We invite 17 participants to conduct the informal user study, which all major in computer science.
Fourteen participants have basic knowledge of visualization. Each participant is invited to compare the
origin visualization and the one which applies a pattern enhancement strategy. Participants could choose
pattern enhancement strategies they like and appraise the effect of strategies.

In our user study, participants are supposed to evaluate the significant degree of each pattern
enhancement strategy and grade each strategy from one to five score. Then participants could choose the
best one they thought in optimization-based pattern enhancement strategies, design-based pattern
enhancement strategies, and all of them. The results of our informal user study are shown in Fig. 6.

The results of our user study show that most participants think optimization-based pattern enhancement
strategies could enhance the intersection elements between two sets, since the element movement strategy
performs well. The design-based pattern enhancement strategies could highlight the intersection elements,
most participants think these strategies perform well, particularly bubble link. As for optimization-based
pattern enhancement strategies, most participants like element movement and element reorder. As for
design-based pattern enhancement strategies, most participants like the bubble link. In the process of user
study, one participant think that he could not understand element bundling because element bundling make
him pay more attention to those elements that are not in the intersection set. ‘‘Overlay visual element
enhancement can be used together with the reorder enhancement’’, ‘‘Adding visual elements should avoid
interference with circle color’’, as two participants suggest.

6 Discussion

In this section, we discuss the limitation and future work about our workflow, layout algorithm, and pattern
enhancement strategy. Our work does not apply to real world data temporarily, but exploring the possi-
bilities could aid future research.

6.1 Limitation

Our limitation contains three parts as followings:

Fig. 6 Results of user study. The score from one to five represents the significance of each pattern enhancement strategy to
highlight the intersection elements. Most participants think that our pattern enhancement strategies could enhance the implicit
pattern partly
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Workflow. The limitation of our workflow contains three parts. First, our workflow lacks verification and
validation in real-world scenarios, which makes our workflow difficult to apply at the moment. Second,
while our workflow supports user exploration, it cannot recommend implicit patterns in the temporal and
evolving set data to help users identify patterns promptly. Third, our workflow does not extend to other types
of data, such as dynamic graphs, which limits the scalability of our workflow.

Layout algorithm. Although our layout algorithm performs well in time efficiency and esthetic metric, the
limitation contains two parts. One is that our layout algorithm is a progressive algorithm. When we layout
the elements of the set in time t, we will not change the timeline layout before time t. Essentially, it is a local
optimal strategy, which may not produce a global fine layout resulting in esthetics. Another is that our layout
algorithm contains two stages including determining the order and scaling the coordinate. The time com-
plexity of our algorithm is higher than those one-stage timeline layout algorithms.

Pattern enhancement strategy. The limitation of our pattern enhancement strategy contains two parts. One
is that the optimization-based pattern enhancement strategies highlight the elements by rearranging the
position of elements, which could spend much time in solving the optimization model. Another is that the
design-based pattern enhancement strategies may cause visual ambiguity and clutter in perception. For
example, participants in our user study suggest that element bundling strategy shade those elements which
are not in the intersection set which may confuse users.

6.2 Future work

After the analysis of limitations, we summarize our future works as follows.

Workflow extension. Our workflow aims to utilize pattern enhancement strategies to highlight the implicit
pattern. The basic idea is employed by many researchers (Sun et al. (2014); Cao et al. (2010)) and could be
a fundamental component in visualization. Apart from timeline-based visualization, we consider extending
our workflow to other forms of visualization. Our future work also contains involving user interaction with
the workflow better. With the human-in-the-loop idea, pattern enhancement strategies could perform well as
a good supplement for temporal evolving set data visualization.

Data & visualization. Our workflow aims at temporal and evolving set data, but it is not only suitable for
temporal and evolving set data. For example, our timeline-based visualization shows the extension feasi-
bility of dynamic graphs. Dynamic graph data contains the relationship between entities in one timestamp,
which is represented as a link between points in timeline-based visualization. On the other hand, there are
many techniques to visualize set or graph data. Our pattern enhancement strategies need to be generalized to
other visualization techniques. For example, if users do not employ timeline-based visualization, the
optimization-based pattern strategies need to be considered and rewritten. As a result, improving the visual
design and implementing more visualization techniques based on our strategies is an important work in the
future.

Algorithm scalability. The scalability of our algorithm is a critical problem when the size of data grows
rapidly. Our progressive timeline layout algorithm contains two parts. When we determine the order, we
utilize an integer programming model to arrange the order of elements. This problem is that it is an NP-hard
problem that could spend a lot of time to solve the large-scale data. It is necessary to find an efficient
algorithm to deal with large-scale data in the future. In the part of scaling the coordinate, we employ a multi-
objective nonlinear optimization model and utilize a weighted linear combination to simplify three objective
functions. The future work will examine the effects of layouts under different weights.

Strategy extension. In the future, we will design and examine more optimization-based pattern enhance-
ment strategies. We could integrate them into a unified optimization model. We also consider deformation
as an optimization-based pattern enhancement strategy. However, the disadvantage of deformation may
break the ratio of the distance between elements in our timeline-based visualization. In terms of design-
based pattern enhancement strategy, we will consider human perception to help propose more significant
designs to enhance the implicit pattern. Otherwise, it is necessary to examine the combination of multiple
pattern enhancement strategies. Another future work about extending the pattern enhancement strategy is to
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integrate more interaction techniques, which could help users select set elements and browse element
details.

System & application. Our work is not an application-driven research but could be a fundamental com-
ponent for timeline-based visualization and pattern enhancement. In the future, we aim to find more
application scenarios to verify the usefulness of our workflow in temporal and temporal evolving set data.
Streaming data are a good choice due to the characteristics of time varying. Based on this data type, the
pattern enhancement strategies could highlight the implicit pattern of streaming data between continuous
timestamps. In addition, we could design and implement a visual analytic system to involve our workflow,
which is helpful for applying our work in specific domains.

7 Conclusion

In this paper, we propose a workflow to analyze and explore the implicit pattern among nonadjacent sets in
temporal evolving set data. As for the dynamic characteristics of data, we utilize the timeline-based visu-
alization and design a progressive timeline layout algorithm to compute the position after data update. As for
the challenge of the relationship visualization between two sets, we propose the optimization-based and
design-based pattern enhancement strategies, and discuss the extension for multiple sets analysis. We also
provide a quantitative experiment to examine the algorithm efficiency. To compare our strategies and
illustrate the usability of our proposed strategies, we also conduct two case studies and an informal user
study Finally, we discuss the limitation and feature work of the workflow. We hope the pattern enhancement
strategies could be a fundamental component in temporal evolving set visualization.
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