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Abstract—Mathematical optimization is the process of deter-
mining the set of globally or locally optimal parameters in a
finite or infinite search space. It has been extensively employed
in the research areas of computer science, engineering, operations
research, and economics. The application of mathematical opti-
mization has also been extended to data visualization, where it
can enhance data processing, structure visualization, and facili-
tate exploration. However, the current state of summarization in
the application of mathematical optimization in data visualization
remains inadequate. In this article, we review and classify the
existing techniques for advanced mathematical optimization in the
fields of data visualization and visual analytics. The classification is
conducted based on a classical visualization pipeline, including data
enhancement and transformation, representation and rendering, as
well as interactive exploration and analysis. We also discuss various
mathematical optimization models and their solution methods to
help readers gain a better understanding of the relationship among
models, visualization, and application scenarios. We additionally
provide an online exploration demo, which could enable users to
interactively find relevant articles. Based on the limitations and
potential trends revealed in the existing literature, we define future
challenges in the cross-disciplinary of mathematical optimization
and data visualization.

Index Terms—Data visualization, mathematical optimization,
scientific visualization, visual analytics.

I. INTRODUCTION

N recent decades, data visualization has developed rapidly
I and has gained widespread acceptance in many aspects of
society, such as business intelligence, government decision-
making, public services, marketing management, etc. A well-
established data visualization pipeline generally includes three
important modules: data transformation, visual encoding, and
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user interaction [1]. Due to the challenge of massive data volume
and complex analysis requirements, creating a fine visualization
is a tough job. Therefore, mathematical models are widely
employed to improve visualization greatly.

Mathematical optimization is the process of searching for the
optimal solution in a finite or infinite space. It has extensive
applications in management science, operations research, graph
theory, engineering optimization, etc. Moreover, many problems
in computer science can be formulated as mathematical opti-
mization problems.

It is worth noting that mathematical optimization is typically
used for quantitative data analysis and model construction. It
plays a great role in each phase of the visualization pipeline,
which helps domain experts better understand the internal rela-
tionship among data, phenomena, and human-computer interac-
tion. A wide range of visualization studies have introduced math-
ematical optimization to improve data processing efficiency,
optimize visualization encoding, and promote efficient manual
exploration. However, to the best of our knowledge, there is no
literature review outlining the relationships among mathemat-
ical optimization, visualization pipeline, and their application
scenarios. Considering the interdisciplinary nature of visual
analysis, it is necessary to survey the existing literature on
mathematical optimization in visualization.

Numerous studies have reviewed and summarized the appli-
cation of optimization problems and methods [2]. Researchers
have surveyed optimization methods in machine learning but
placed an emphasis on the collection of optimization prob-
lems [3] and optimization methods [4]. However, these studies
do not summarize how mathematical optimization work in the
process of visualization and the combination of optimization
method and data visualization. Thus, novices may struggle for
understanding what role optimization plays in each visualization
pipeline phase.

In this paper, we have collected 212 papers. Most of them are
from IEEE TVCG, IEEE VIS, EuroVis, and IEEE PacificVis. By
searching for a set of keywords related to optimization, we filter
out papers related to the cross-domain of mathematical optimiza-
tion and visualization, see more in Section II-A. Categorizing the
above academic papers is not trivial. Many works classify papers
by data types, visualization types, or application scenarios such
as the survey of anomalous user behaviors from Shi et al. [5].
Our survey is inspired by the six VIS areas, and we refer to the
visualization pipeline from McNabb and Laramee’s work [6].
Then we classify papers on the basis of three major phases of
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the data visualization pipeline, namely, Data Enhancement &
Transformation, Representation & Rendering, and Interactive
Exploration & Analysis. We also provide different categories in-
cluding mathematical optimization, solution method, challenge,
and future work. In the category of model and solution method,
we follow the basic mathematical definitions and characteristics
of solution method [7].

In the three major phases of the pipeline, many studies on
Data Enhancement & Transformation employ mathematical op-
timization like dimension reduction and data refinement. Papers
on Representation & Rendering use mathematical optimization
in color encoding, perception, and particularly in visual layout.
Papers on Interactive Exploration & Analysis take up mathe-
matical optimization in different types of interaction such as
navigation, reconfiguration, and filtering. In our work, each part
of the above phases are divided into fine-grained categories. We
summarize future work and open problems (6W 1H, Why, What,
How, When, Where, Which, and Who) that provide a forward-
looking perspective to tackle challenges in surveyed papers.
There are many excellent surveys that provide an interactive
interface, such as TextVis [8] and MLAVIS [9]. To help readers
interactively explore and locate articles of interest efficiently,
we also provide an online interactive exploration interface on
the Web at https.// zjutvis. github.io/ MPMSurvey/ .

The major contributions of our paper are as follows. First, this
paper presents a comprehensive survey of recent developments
in the application of mathematical optimization in visualization
and visual analytics. Second, it provides a sophisticated classi-
fication of existing literature and identifies new challenges and
trends, which can promote deeper insights and understanding of
the field.

We first describe our methodology and taxonomy, and present
an interactive web-based demo of our survey. Then, we elaborate
on three phases, including Data Enhancement & Transforma-
tion in Section III, Representation & Rendering in Section 1V,
Interactive Exploration & Analysis in Section V. Challenges
and open problems are discussed in Section VI. Our survey is
concluded in Section VII.

II. METHOD OF SURVEY

This section discusses the methodology and taxonomy of our
survey. Section II-A describes how papers are selected. Sec-
tion II-B presents the categorization of papers, and Section II-C
discusses the distribution of papers in each category to verify
our taxonomy in Section II-B.

A. Methodology

Mathematical optimization is a vast field as almost algorithms
contain optimization. We have to declare the following con-
ventions on the scope of the paper collection due to the space
limitation:

1) We prioritize papers that formulate a mathematical opti-

mization problem or model from the problems in different
phases in the visualization pipeline.
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2) For those user-driven or semi-automated optimization
works, we focus on the part where the problem in the visu-
alization is transformed into a mathematical optimization
problem.

3) Mathematical optimization is also called mathematical
programming in some branches such as management
science or operations research. In this work, we do not
distinguish them and utilize mathematical optimization as
a unified terminology (We use both of them in the paper
collection).

4) We accept that there may be publications that fit the
description that is not included because of the exclusion
criteria of their search. But our surveyed papers could
reflect the cross-domain of mathematical optimization and
visualization.

The process of collecting includes the following steps.

First, we search publications including conferences and jour-
nals on visualization such as IEEE TVCG, IEEE VIS, IEEE
PacificVis, EuroVis, ACM CHI, Computer Graphics Forum, and
Journal of Visualization from 2010 to 202 1. During the searching
process, we utilize a set of keywords that is optimization-related
(e.g., “optimization”, “programming”, “minimize”, “maxi-
mize”, “objective function”, “constraint”, and their noun or
verb form).

Second, we further check and filter papers obtained during
the first step carefully. Papers that rarely mention optimiza-
tion (e.g., only in “Related Work” or “Conclusion”) would be
filtered out. Then we recognize mathematical formulas about
mathematical optimization models and read the corresponding
sections manually. It ensures the collected papers are all related
to mathematical optimization. After this round of screening,
about fifteen percent of papers are retained.

Third, we classify these papers into the corresponding cate-
gory according to several perspectives including visualization
pipeline, mathematical optimization, and solution methods. In
the classification process, since the content of mathematical
optimization models and solution methods are usually formu-
lated as the strict mathematical formulas in one fixed section
(e.g., “Algorithm” or “Model” section), we classify papers
into corresponding categories by an master with a background
in mathematical optimization. For certain ambiguities papers,
we discuss with experts with a mathematical background to
determine their categories.

We also search highly cited publications by these papers
(e.g., IPSEP-COLA [10]), which brings eight percent of our
surveyed papers. We summarize the publication distribution of
all surveyed papers in Fig. 1. Please note that ACM CHI has a
small quantity of papers in Fig. 1, since its publications center
more on human-machine interaction techniques and are less
associated with mathematical optimization.

B. Taxonomy

After searching keywords and filtering papers, we categorize
212 papers into three major categories. Initially, we classify these
papers according to the types of mathematical optimization.
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Fig. 1. Taxonomy of visualization pipeline. Each major category has cor-
responding minor categories. The bubble size encodes paper numbers. Each
minor category is surrounded by selected literature. The sparkline in the bubble
shows the temporal distribution of papers published in each minor category.
The left-upper of the figure is a list of sources of paper, we use IEEE Xplore,
ACM Digital Library, Google Scholar, and Wiley Online Library for literature
retrieval.

Although this classification allows us to accurately obtain the
application of various types of mathematical optimization in
visualization, it cannot facilitate an in-depth exploration of how
mathematical optimization is utilized in specific visualization
forms or each phase of the visualization pipeline. Therefore, we
adopt the categorization of visualization pipeline complemented
by mathematical optimization and categorize papers in these
two aspects. In each major category, we classify and sum-
marize mathematical optimization and solution methods they
used.

Visualization Pipeline Our taxonomy about visualization
pipeline combines the following principles. First, we refer to
the transition about VIS area model which began from 2020.
The VIS area model contains six areas including Theoretical
& Empirical, Applications, Systems & Rendering, Represen-
tations & Interaction, Data Transformations, and Analytics &
Decisions. However, certain areas such as Theoretical & Em-
pirical, aim to establish the foundation of VIS as a scientific
subject and evaluate specific VIS techniques. Thus, there are
fewer papers related to mathematical optimization in these areas.
Second, a complete pipeline has already been established with
the development of visualization research over the past few
decades. McNabb and Laramee [6] summarize a basic pipeline in
information visualization including data enhancement & trans-
formation, visual mapping & structure, exploration & rendering,
interactive analysis, and perception. Nevertheless, interactive
analysis and perception have scarcer papers since they pay more
attention to interaction techniques, analysis, and evaluation for
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data visualization which relate to mathematical optimization
methods less.

In our topics of interest, interactive analysis and perception
have relatively fewer papers related to mathematical optimiza-
tion than the other three pipeline phases. Many papers use
mathematical optimization models in scientific visualization,
most of them center on the rendering phase or enhance data for
rendering. Based on the above principles and considerations, we
summarize the visualization pipeline into three phases in Fig. 1.

® Data Enhancement & Transformation (DET) address the
issue of data processing before visual encoding. It is used
to prepare data before visualization. This part includes
Dimension Reduction, Data Classification, and Data Re-
finement. We describe them separately in Section III.

® Representation & Rendering (RR) has a strong emphasis
on visual mapping and rendering, as well as encoding
data structure to visual expression. Research on percep-
tion related to optimization can also be categorized into
this phase because those papers describe quality of vi-
sual expression or layout. This part consists of Grid &
Rectangle Layout, Node-Link Graph Layout, Geographic
Map Layout, Hierarchical Structure Layout, Perception
& Color, and Rendering. We discuss more details in
Section IV.

o [nteractive Exploration & Analysis (IEA) focuses on inter-
action, many papers related to mathematical optimization
employ interactive techniques to fine-tune the visual layout
by mathematical optimization. This part comprises Navi-
gation, Filtering, and Reconfiguration. More details about
this part are elaborated in Section V.

Mathematical Optimization Model We have already provided
the basic concepts of mathematical optimization in the supple-
mental material, available online. We classify papers by basic
mathematical optimization definitions to help readers under-
stand their usage. Mathematical optimization can be categorized
as four perspectives based on different conditions:

® Constrained or Unconstrained According to whether the
mathematical optimization model has constraints, the
mathematical optimization can be divided as constrained
optimization or unconstrained optimization. For example,
plenty of studies use energy function technique as an
unconstrained optimization model to reduce visual confu-
sion and improve visualization aesthetics. Constraints are
ubiquitous in preserving the position relationship in visual
layout problems.

e Continuous, Discrete or Mixed According to the range
of variables, mathematical optimization can be divided
into continuous, discrete, or mixed optimization. In visual
layout, a common mathematical optimization problem is
to compute and layout the continuous or discrete coordi-
nates of points. A simple example of discrete optimization
problem usually used in visual layout is to assign elements
to designated areas.

® Linear or Nonlinear According to the form of the objective
function and constraint, mathematical optimization can be
divided into linear optimization and nonlinear optimiza-
tion. In fact, due to the straightforward mathematical form,
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linear optimization has a solid theoretical foundation and
solution methods (included in many commercial and open-
source solving tools). Linear programming(LP) is widely
used in visual layout and scheduling. On the contrary,
nonlinear optimization is one of the most pervasive but
most complex types of model in real engineering prob-
lems. Since its objective function or constraints contain
nonlinear terms, it can be commonly used to express or
formulate complex problems, but the difficulty of solving
the optimization model also increases rapidly. In particular,
a model with a quadratic objective function and linear
constraints is a special nonlinear optimization model(e.g.,
quadratic programming) and is an essential model in oper-
ations research and management science. See more details
in the mathematical optimization textbook [11].

o Single-Objective or Multi-Objective According to the num-
ber of objective functions, mathematical optimization can
be divided into single-objective or multi-objective opti-
mization. The multi-objective optimization model can for-
mulate complex problems and usually needs to be trans-
formed into single-objective ones, which essentially is
a dimension reduction problem. Many researchers use a
weighted linear combination to combine several objective
functions into a single-objective optimization. Another
technique to measure multiple objective functions is Pareto
optimal which reaches a stable state that one objective
cannot improve without making another worse at the same
time.

Solution Method For most mathematical optimization mod-
els, quickly locating a globally optimal solution is not trivial.
Existing mathematical theory [7], [11] points out that it is
relatively easy to solve linear programming and quadratic pro-
gramming (QP) which has linear form constraints and quadratic
objective function. For NP problems such as the Traveling
Salesman Problem (TSP) [12], it is not easy to find a glob-
ally optimal solution. Many solution methods such as heuristic
method may only find a locally optimal solution. Given that
unconstrained programming does not have constraints, there are
still many solution methods that rely on gradients, however, these
methods are unable to guarantee finding the globally optimal
solution.

According to the characteristics of different solution meth-
ods and whether to use gradient and other information, we
divide solution methods used in papers as Line Search Method,
Heuristic Algorithm, Programming Method, Data Structure and
Algorithm, Solver, and Numerical Algebra Method. For more
details, please see the supplementary material, available online.

Table I shows selected surveyed papers in the visualization
pipeline and various categories of mathematical optimization
models. In the selecting process, we choose representative pa-
pers from different categories and time periods to keep a category
and time balance. For example, papers in mixed optimization
are much fewer than those in continuous optimization or dis-
crete optimization, but to present papers in this category, we
choose papers in this category [13], [14] to bring a compre-
hensive display to readers, which keeps a balance of ratio of
papers in each category.

TABLE I
THE EXAMPLE OF SURVEYED PAPERS IN MAJOR CATEGORIES. THE CHOICE OF
PAPERS CONSIDERS THE BALANCE OF CATEGORY AND TIME. EACH PAPER
BELONGS TO ONE PHASE OF VISUALIZATION PIPELINE AND FOUR
MATHEMATICAL OPTIMIZATION MODEL CATEGORIES. PARTS EMPLOY MORE
THAN ONE MODEL IN VARIOUS VISUALIZATION PIPELINE PHASES

P
" ST e o SESs
Paper Venue |Year| QQ) Qg' \«"F’ Cz§ \Sé C§ Q"% ¥ {}° é““ G"\o’o\@ o’c\w
Gansner et al. [206] TVCG |2005 ) v v v v
Dwyer et al. [10] TVCG [2006 ° vV vi|iv
Frishman and Tal [108] | TVCG |2008 () v v v|v
Béttger etal. [35]  [IEEE PVis2008| ® viv vi|v
Collins et al. [121] TVCG (2009 o vV v v
Kopfetal. [147] TOG [2010 ] V| v v v
Joia etal. [31] TVCG [2011] ® v v vi|iv
Wang and Chi [152] TVCG (2011 e |V v v v
Haunert and Sering [148]| TVCG [2011 ° v v v v
NGllenburg and Wolff [13]| TVCG [2011 o v v v v
Stott et al. [151] TVCG (2011 o viiv v v
Amorim et al. [34] IEEE VIS[2012( ® v v vi|v
Tanahashi and Ma [128] | TVCG (2012 ° v v 4 4
Fink et al. [201] TVCG [2012 ° v v v v
Liuetal. [129] TVCG (2013 o v v V| v
Lehmann and Theisel [37]] TVCG |2013( @ vV vV
Dwyer et al [110] TVCG |2013 ° v v v v
Poco et al. [216] TVCG (2014 e |V v v|v
Dwyeretal. [111] EEE PVis|2014 o v v v v
Cui etal. [163] TVCG [2014 o v v v v
Sun et al. [125] TVCG (2014 ° v v vV
Tanahashi et al. [133] TVCG [2015 ] v v v|v
Rauber et al. [27] EuroVis 2016 ® vV v|v
Wang and Peng [153] | TVCG [2016 o |v v v v
Yoghourdjian et al. [136] [ TVCG |2016| v v v v
Onoue et al. [135] JoV 12016 o v v V| v
Kim et al. [209] TVCG [2017 o |V v vi|v
Wueetal. [62] EEE PVis|2017| ® vV vi|iv
Kruiger et al. [101] EuroVis |2017| ° vV vV
McNeill and Hale [87] | EuroVis (2017 ° v v vV
Sun etal. [202] TVCG (2017 ° Vv v v
Wang et al [103] TVCG [2018 L[] V| v v|v
Zarate et al. [127] EEE PVis2018 o v v 4 v
Guo etal. [18] TVCG (2018 ® v v vi|v
Park et al. [14] |ACM CHI|2018 ° v v v v
Quan et al. [193] TVCG (2018 ° v v Vv
Guo et al. [54] TVCG (2019 ® v]v v v
Wang et al. [205] TVCG [2019 ] vV v v
Castermans et al. [39] TVCG |2019| ® v v v v
Mizuno et al. [140] EuroVis {2019 ° v v v v
Wang et al. [143] TVCG (2019 o vV v v
Mumtaz etal. [79] | EuroVis [2019) ° v]v v v
Meulemans [74] EuroVis |2019] ° v v v v
Hadwiger et al. [58] TVCG [2019 ° Vv viI|v
Agus et al. [139] EuroVis {2019 ° v v v v
Knittel et al [82] TVCG (2020 o vV v v
Ko etal. [33] EuroVis [2020( ® v]v v]v
Lyuetal. [112] TVCG [2020 o v v v|v
Bast et al. [150] EuroVis |2020| [ ) v v v v
Wang et al. [208] TVCG [2020 ° v v V| v
Chen etal. [118] IACM CHI[2020 o vV V| v
Fujiwara et al. [22] TVCG [2020] ® vV vV
Rojo and Giinther [60] | TVCG (2020 ] vV v|v
Rojo et al. [189] TVCG [2020 o v v vI|v
Gedicke et al. [203] TVCG [2021 e |V v v v
Jin et al. [120] TVCG [2021 ° V| v viv
Doraiswamy et al. [32] | TVCG |2021| ® v v v|v
Luetal. [144] TVCG (2021 o v v v v
Hossain et al. [23] TVCG |2021| ® vV v|v
Jacobsen et al. [142] TVCG [2021 o v v v v
Chen et al. [89] TVCG [2021 o v v v v
Geiger etal. [137] EuroVis (2021 ° v Vv v
Kikuchi et al. [84] CGF  [2021 ° v v v v
Binucci et al. [138] CGF  |2022| [ ) v v v v
Yu et al. [104] EEE PVis|2022 o v v 4 v
Chen et al. [172] TVCG [2022 o v v v v
Bartolomeo etal. [130] | TVCG |2022] o v 4 v v
Beusekom et al. [43] TVCG (2022 ® v v vi|v
Queetal. [92] TVCG [2022 ] v v v v
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C. Taxonomy Evaluation

To evaluate the similarity and difference among the papers in
the above three categories, we conduct a projection experiment
to examine the distribution of the collected papers. First, we
compute the TF-IDF value [15] of each word in each paper
and sort the words in descending order. We then choose top K
percent part of words where K is adjustable and use them to train
the Doc2Vec model [16] which could represent documents as
vectors, then we encode four different perspectives of mathemat-
ical optimization model. For example, we encode unconstrained
optimization as 0 and constrained one as 1. We append these
four normalized elements into document vectors which aim to
represent information of mathematical optimization models in
vectors. After that, we compute cosine similarity matrix and
use t-SNE [17] to project the collected papers. There are many
parameters that may affect the result of Doc2Vec such as word
window, vector size, sample threshold, and train epochs. Other
parameters like perplexity may result different projections in
t-SNE. To determine parameters, we test combinations of dif-
ferent parameters including word window, vector size, sample,
negative, and train epochs in the Doc2Vec model, top K percent
in TF-IDF, and perplexity in t-SNE model.

Our expected projection result is to make the distribution of
different categories of papers as diverse as possible. In order
to reach this expectation, we need to choose an appropriate set
of parameters. This problem can be described as, given three
categories C1, Cs, and Cj, each category has several points,
our goal is to choose one combination of parameter values that
ensures the distribution of the three categories is as diverse as
possible.

We first compute the mean value as the class center point p;
for each point z in C and P, for each point y in C5. Next, we
take the distance between the farthest point and the center of the
class as the maximum radius r; and r». Finally, we compute the
number of outliers as follows:

Nouttier = Y Na@ywy>ray + 2 Wd@rwsr) (D
% J

which means the number of points that outside maximum
radius of other categories. A bigger Ny indicates that
there are fewer outlier points of each corresponding category
which makes points of one class as far away from points of
another class as possible. The number of literature in Interac-
tive Exploration & Analysis is fewer than two other categories
(i.e., Data Enhancement & Transformation, Representation &
Rendering) and papers in Interactive Exploration & Analysis
have a high relevance with two other phases. Due to this issue,
we only compute outlier of two other categories. Considering the
consistency with the distribution pattern of original data and the
computing performance of Doc2Vec and t-SNE, we choose a set
of parameters in the top 10. The final projection result is shown
in Fig. 2. We also provide a detailed projection result (each minor
category) in supplementary material, available online.

In Fig. 2, the four subgraphs show the results of the paper
projection in the different taxonomy of optimization models. In
Fig. 2(a), most papers using constrained optimization are on the
right, there is an obvious distribution pattern with papers on the
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Fig. 2. Projection of papers using t-SNE: different colors (yellow, red, and
blue) encode corresponding major categories in Data Enhancement & Transfor-
mation, Representation & Rendering, and Interactive Exploration & Analysis.
Different shapes (solid, plus sign and hollow circles) denote various models in
each taxonomy of mathematical optimization.

left. We also note that there are two outliers. The left one in the
dotted box is EventThread [18], this work employs constrained
optimization in Data Enhancement & Transformation and un-
constrained optimization in visual layout. The right outlier [19]
utilizes an objective function with a penalty term to measure the
number of constraints violated. Similarly, Fig. 2(b) also shows an
obvious distribution pattern between linear and nonlinear opti-
mization. The outlier located in the center [20] provides detailed
background and related work of star coordinates, which may
have misled it as an outlier. In Fig. 2(c), the single objective (hol-
low circle) and multi-objective optimization (solid circle) also
have obvious regional boundaries. Compared with Fig. 2(a), we
find that two-thirds of papers with multi-objective optimization
models belong to unconstrained optimization. Because most of
them minimize a weighted linear combination of different objec-
tive functions with different practical meanings. In Fig. 2(d), we
note that most papers with mixed optimization models are near
the circle with continuous and discrete optimization models. It
matches our expectations because mixed optimization models
contain both continuous and discrete variables.

III. DATA ENHANCEMENT & TRANSFORMATION

We discuss papers related to mathematical optimization mod-
els in Data Enhancement & Transformation. The pipeline phase
is divided into three minor categories and discussed in respective
subsection. The left figure in Fig. 3 shows the basic method-
ological paradigm of Data Enhancement & Transformation,
mathematical optimization can help deal with different aspects
of data.

A. Dimension Reduction

Dimension Reduction is a vital part of data processing. It
aims to project high-dimensional data into low-dimensional
space while preserving data information from high-dimensional
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space as much as possible. There are many proposed dimension
reduction techniques such as PCA, MDS, and t-SNE. However,
dimension reduction inevitably results in the loss of information.
Most papers employ unconstrained optimization models. But
they different objective functions to preserve certain information
that users are concerned such as principal component, relative
correlation, clusters, topology correlation, or specific data infor-
mation.

A classical dimension reduction method is Principal Compo-
nent Analysis (PCA), which first projects data in the direction of
the greatest variance. Due to the requirement of data comparison
and dynamic streaming data, many variants of PCA are formu-
lated to compare the data item with clusters [21] and compute
data positions incrementally by mathematical optimization [22].

Conserving relative distance aims to analyze relative correla-
tions among data items. Multi-dimension Scaling (MDS) and its
extended algorithm are commonly used for dimension reduction
by optimizing the objective function of distance. Apart from
preserving the relative distance, the variants of MDS balance
multiple viewpoints by integrating them into an objective func-
tion [23], consider order discord by depth penalty term [24],
and cluster points by density-based method [25]. Other works
utilize results of MDS to cluster elements [25], [26] due to the
characteristics of distance-preserving.

t-SNE has gained much attention because it can preserve dis-
tribution in low-dimensional space, and has many variants with
modification of nonlinear objective function (KL-divergence).
The variants integrate penalty terms of time variance to project
temporal data [27], combine clusters to balance readability [28],
and minimize vertical distance terms for bipartite graph explo-
ration [29].

One of the critical problems in dimension reduction is pre-
serving the specific structure or pattern in the process of pro-
jection. Mathematical optimization could help enhance patterns
by the dissimilarity metric [30], project local structure with
user knowledge [31], and preserve topology structure [32]. For
example, retaining topological features [32] is considered when
projecting high-dimensional data, as shown in Fig. 3(b). Due
to their time cost and complexity, many works aim to improve
the time efficiency for UMAP by a progressive method [33] and
interactivity of local affine multidimensional projection [34],
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as shown in Fig. 3(a). Nonetheless, dimension reduction tech-
niques for preserving topology relationships garner attention in
geographic maps [30], [35]. These works utilize mathematical
optimization models to encode the data dissimilarity [30] and
enhance the metro line [35].

Many works project high dimension to low dimension in
radial direction such as star coordinate graph [20], [36], [37],
[38]. Rubio et al. [36], [38] aims to enhance data estimation
in radial axes graph and an orthographic star coordinate is
purposed to decrease distortions by Lehmann and Theisel [37].
SolarView [39] formulates a low-distortion radial embedding
problem as TSP to visualize entities and relations in the radial
graph.

B. Data Refinement

Data Refinement is a process of filtering, selecting, and clear-
ing data that s critical and salient. it tends to abstract or transform
raw data into a reasonable form to gain insights while retaining
original information as much as possible.

Sampling is a commonly used technique to refine and abstract
partial data, such as streaming data [40], scattered data [41],
and multi-dimensional data [42]. Sampling data can improve
accuracy but can be time-consuming. Xie et al. [42] utilize LP
to accelerate sampling when selecting the initial position of the
MCMC method.

Sorting is a rearrangement and transformation method of data
refinement, which can be viewed as a mathematical optimization
process [43], [44] to find the best order of data arrangement. This
problem could be considered as a linear assignment problem
and formulated as an LP model [43], [45] to determine the best
order. GraphScape [46] and AutoClips [47] utilize LP models to
arrange the chart order to generate a graph sequence or video.

Extracting is to detect and preserve significant information
and neglect redundant data records, which could refine and
compress data. Minimum Description Length (MDL) is a pre-
vailing method of data compression in information theory. MDL
balances the description length of data and complexity of the
model for data summary, which employs MDL to aggregate
nodes [48] and summarize groups of temporal event data [49].
Other works like Guo et al. [ 18] detect latent clusters and extract
key information in temporal event data by Canonical Polyadic
Tensor Decomposition algorithm. By discarding redundant data
and preserving valid data, data refinement can further improve
the performance of detecting significant information.

Certain researchers refine and transform data to recommend
significant information such as [50], [51], [52]. These works
project selected points to high-dimensional space to recom-
mend chart [50], recommend neurons by a subset selection
problem [52], [53], and refine event data based on word em-
bedding [54].

In scientific visualization, mathematical optimization could
help compute and extract features before visual encoding and
rendering. Many works aim at tracking features by weight graph
matching [55], computing geometric shapes of potential vortic-
ity [56], and extracting vortices in vector fields [57]. One of the
critical problems in vector field computation is the coordinate
transformation. Mathematical optimization models could help
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transform the observer in vector field [58], curved spaces [59],
or preserve the topology between two reference frames [60].

C. Data Classification

Data Classification aims to find and mine task-specific pat-
terns before visualization. The content and methods of pattern
mining are different according to various data characteristics.
Spatio-temporal data, network data, and sequence data are
among the most common data types in visual analysis tasks.
Due to the data characteristics of high-dimension, redundancy,
and heterogeneity, constructing mathematical optimization in
pattern mining appears particularly essential and efficient which
abstracts inherent features and latent patterns into reasonable
mathematical structures.

Pattern mining in spatio-temporal data can be further classi-
fied into global-based and local-based methods. Global-based
methods construct the mathematical model based on the as-
sociation of all sequences, and aim to leverage contextual in-
formation to capture co-occurrence patterns in the data. Local-
based methods aim to extract feature evolution patterns in se-
mantic dimensions by mathematical models which focus on a
single sequence. In global-based methods, plenty of research
use Non-negative Matrix Factorization (NMF) as a quadratic
optimization model to find abnormal pattern [61], [62] and
mine potential regional evolution [63]. In local-based methods,
numerous papers employ tensor-based methods to deal with
the multifaceted features and extract task-specific features in
the single sequence. Spatio-temporal data can be described
as tensor because it both has feature dimension and time
dimension. Many papers utilize tensor decomposition meth-
ods in spatio-temporal data to extract expected patterns [64],
identify hidden patterns [65], and recognize urban functional
zones [66].

In the pattern mining of network data, recent works concen-
trate on the task of division and classification of nodes in the
network which can also be regarded as a typical classification
problem in machine learning. The mathematical optimization
model construction of network data can be further divided into
supervised and unsupervised methods. Unsupervised methods
are generally used to divide nodes in network which could
be seen as an unconstrained optimization model. These works
aim at recognizing abnormal patterns [67], dividing clustered
nodes [68], and detecting communities [69]. Supervised meth-
ods are usually used in urban route planning [69], finance risk
predicting [70], and biology data analyzing [71]. On the other
hand, mathematical optimization models have shown potential
in disease diagnosis [72] in medical mesh data and label bone
structure by graph cut algorithm [73].

Research in Data Classification receives more and more
attention with the application of various pattern recognition and
machine learning techniques in this phase of visualization, to
help pattern detection and classification.

As pattern recognition and machine learning techniques be-
come increasingly applied in this phase of visualization, there
is a growing focus on research in Data Classification such as
pattern detection and classification.
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Fig. 4. Two cases in Grid & Rectangle Layout. (a) Removal of rectangle
overlap by the LP model [74]. The red lines indicate the diamond moving
paths from original positions (blue) to optimized ones (orange). (b) McNeill
and Hale [87] compare different types of grids to visualize tile maps.

IV. REPRESENTATION & RENDERING

In this section, Representation & Rendering, we discuss pa-
pers that used mathematical optimization in visual layout, color
mapping, and visual rendering. Almost half of the collected pa-
pers belongs to this category, particularly visual layout. Accord-
ing to the characteristics of the papers, we divide them into six
different minor categories: Grid & Rectangle Layout, Node-Link
Graph Layout, Geographic Map Layout, Hierarchical Structure
Layout, Perception & Color, and Rendering. In order to illustrate
the relations among the above minor categories, mathematical
optimization model, and solution method, we summarize the
selected papers in Table II. The basic methodological paradigm
of Representation & Rendering is shown in Fig. 5. The example
critical techniques and elements are employed in mathematical
optimization to map data to visualization form.

A. Rectangle & Grid Layout

The optimization goal of Rectangle & Grid Layout is to
make the layout results concise and clean. Most of the works
we collected in Section IV-A use mathematical optimization
models to alleviate the clutter during visual layout. Most works
on rectangular layouts follow a similar process. The steps are as
follows:

1) Determine the optimization goal (e.g., eliminate the over-
lap among rectangles as much as possible [74]; obtain a
compact linear layout [75]).

2) Express constraints or penalties (e.g., the position rela-
tionship between rectangles as constraints [76], while the
width and height were taken as the constraints [75]).

3) Formulate the optimization model after the above two steps
(e.g., the LP and QP models are adopted [74] and the
unconstrained optimization model is adopted [75]).

4) Choose suitable methods to solve the model (e.g., CPLEX,
Gurobi, and Mosek) by the global or local optimal.

5) Feedback and retry [optional] (e.g. adjust parameter [74]
to improve models by iterating steps 1-4).

As the simplest type of graphics in plane geometry, rectangle
has a wide practical application in visualization. Many visual-
ization elements could be seen as rectangles and formulate a
mathematical optimization model to layout their position such
as bar chart [77], word cloud [78], and label layout [79]. When
applied to word cloud layouts, many papers use mathematical
optimization to effectively reduce overlaps and gaps such as [ 78],
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TABLE II
MATHEMATICAL OPTIMIZATION MODELS AND SOLUTION METHODS IN REPRESENTATION & RENDERING. HALF OF THE PAPERS ARE IN THIS PHASE OF THE DATA
VISUALIZATION PIPELINE. DIFFERENT COLORED SQUARES DENOTE MINOR CATEGORIES. THE ROW OF THE TABLE IS SORTED BY THE NUMBER OF PAPERS

Constrained or Unconstrained Continuous, Discrete or Mixed Linear or Nonlinear Single-Objective or Multi-Objective
C ined U ined C Discrete Mixed Linear Nonlinear Single-Objective | Multi-Objective

[Solver EiaEERREE i = |58

Intelligent Optimization | E& H H

IFirst Derivative Method = = =

Simple Heuristic Hi " -

Two-Stage HH = =

|Approximation ] H

IDynamic Programming ] 1

Graph Theory H H - He

[Active Set = = = =

Hungarian H H " " H

Second Derivative Method| # - - -

INumerical Algebra = = " 1

Grid Search

IAnalytic Method - = - -

[Simplex " = " -

® Grid & Rectangle Layout ~ ® Node-Link Graph Layout

® Geographic Map Layout

B Hierarchical Structure Layout ~ ® Perception & Color Rendering
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Fig. 5.

The basic methodological paradigm and classical papers of Representation & Rendering. (a) Flow map layout [129] reduces confusion in story details.

(b) Transitions between edge bundling and trajectory map improve faithfulness of actual movement paths [112]. (¢) Metro map metaphor [142] visualizes set data
as metro map by a multi-stage optimization layout. (d) Perception optimization [143] for various classes of color. (e) Palettailor [144] integrates data aware manner

into types of categorical data visualizations.

[80]. When applied to the layout of labels, it is usually necessary
that individual labels do not overlap. Many works regard labels
as rectangles and optimize layouts to determine the position
of outlier labels in scatter plots [79], explore the relationship
between labels [81], and facilitate tags search in documents [82].

Rectangle layout is ubiquitous in user interface layout be-
cause most computer programs use rectangle interfaces such
as multi-display visual analysis [83], multiple user interfaces
adaption [14], and web interface [84]. These works regard
windows as rectangles and utilize constraints to limit their
position in the process of layout optimization. Furthermore,
ViSizer [85] resizes the visualization form for different devices
automatically and solves the layout adjustment model by the
previous method [86].

The grid layout is a type of polygon layout on a map. The
goal is to arrange and align the grid on the map as tidily as
possible. Many works have sought to simplify geographic maps
as rectangular grids [87] and polygon grids [88], as shown in

Fig. 4(b). In these works, mapping areas as grids could be for-
mulated as a typical set matching problem or linear assignment
problem. The grid layout can also be used to present an overview
of image pattern distribution [89], [90], clustered graphs [91],
hypergraphs [92], euler diagrams [93], and combined with ge-
ographic information [94]. For example, a grid layout problem
is commonly expressed as a linear assignment problem [95]
to explore the image distribution pattern [89]. Moreover, Wu
etal. [91] propose the multilevel technique of regional balancing
in a cluster map layout by a multi-objective optimization model.
Furthermore, the grid layout is also widespread used in the field
layout such as conforming grid structures [96], surface grid
mapping [97], and multiplanar grid reconstruction [98].
Graphical position relations are often used as objective func-
tions or constraints. Since the rectangle position relation only
considers horizontal and vertical directions, it results in linear
constraints in the model. For polygon layouts, the problem
is how to specify concise constraints which could describe
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TABLE IIT
THE COMMON METRICS OF MATHEMATICAL OPTIMIZATION MODEL IN
NODE-LINK GRAPH LAYOUT

Form Aspect Metric Papers
[10], [100], [113], [120]
. [106], [109], [118], [121]
o-@ Distance [104], [105], [114], [122]
[123]
! — [TOT], [104T, T115], [124]
Node | ¥ Positon [117], [125]
oo Similarity [99], [102], [122]
$ Order [112], [119], [126]
:5. Number [112]
) [TT0], [122], T124], T127]
& ofq Crossing [118], [128], [129], [130]
3 ) [124], [128], T131], [132]
E | og] wiggle [126], [129], [133]
g | Pdeefline Mo Thend [104], [118], [130]
8 e Edge Length [118], [134], [135]
Q
0 3\ Edge Number [110], [111]
5 ® Space [128], [129], [136]
Group &
Module Bﬁl Group Number [110], [137]
By Overlap [115], [138]
8%. Distribution [101], [105]
Structure & o/: Importance [112]
User-defined l:: Proximity [102]
oo Uniformly
Py metric [108]
~ ¢ Position [104], [117], [125], [138]
g Node T Constraint [130], [133]
S ° Order
g ? Constraint (112], [119], [126]
O Group & Group
Module glo Constraint (111], [129], [130], [137]

nonorthogonal direction. In fact, there are still challenges to
be addressed in Rectangle & Grid Layout such as maintaining
the original graphical dimensions and balancing the relationship
between position and size.

B. Node-Link Graph Layout

Node-Link Graph Layout has always been widely considered
in Representation & Rendering. This layout is broadly applied in
tree and network data to characterize complex relationships be-
tween nodes or events. This section introduces the mathematical
optimization method applied in Node-Link Graph Layout. Vari-
ous metrics are utilized in Node-Link Graph Layout, which are
formulated in objective functions or constraints of mathematical
optimization models. We summarize the common metrics of this
category in Table III.

The force-directed principle is one of the most commonly
employed methods for Node-Link Graph Layout. It assigns
forces among the set of edges and the set of nodes during graph
drawing. Its primary purpose is to position the nodes of a graph
in two-dimensional or three-dimensional space so that all the
edges are of more or less equal length and there are a few crossing
edges as possible. Then using these forces either to simulate the
motion of the edges and nodes or to minimize their energy by
their relative positions. Numerous researchers introduce variants
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of force-directed techniques with the improvement of objective
functions and constraints. The objective function in mathemat-
ical optimization models usually takes the Stress minimization
function as a basic form, and also has many variants with user-
defined terms or metrics such as loyalty metric [99], dissimilarity
metric [100], compression terms [101], node similarity and
target proximity [102]. Facing the numerous metrics in the above
work, many unified frameworks are proposed to consolidate and
integrate the various design goals and constraints in node-link
layout [103], [104].

Recently, with the development of machine learning and
deep learning, data-driven methods are also used to optimize
node-link graphs. Kwon and Ma [105] utilize deep learning to
generate a node-link graph layout with a novel encoder-decoder
structure. Their work proves that deep learning could generalize
graph structure in graph layouts. This capability indicates broad
applications and may play an increasingly role in large-scale
network layout.

To further improve the computational performance of Node-
Link Graph Layout, we find many papers incorporating parallel
computing tools into the layout process. Many researchers ob-
tain a fine result by accelerating computing, such as parallel
computing [106], [107], culling [108], and vertex sampling
strategies [102], [109]. Although SGD is a fast optimization al-
gorithm due to fewer samples in iterations, the above work [106]
improves it by updating a pair of nodes simultaneously and using
mini-batches parallel.

In addition to node position layout, the optimization of edges
is also widely used to adjust network data layout. For dense
graphs, a common technique is to cluster nodes as modules and
minimize the number of edges [110], [111] and crossings [110]
by multi-objective optimization or integer linear programming
(ILP). Apart from node clusters, edge compression can be seen as
another type of data summarization. Mathematical optimization
methods can preserve more details in edge compression. OD
Morphing [112] employs interactive edge bundling to strike a
balance between degrees of faithfulness in trajectories, as shown
in Fig. 5(b).

To reduce visual clutter and map data clearly, researchers
propose a set of metrics such as line wiggle, overlap [113], line
crossing [114], [115], and edge bend [113]. These metrics can be
optimized by mathematical models to ensure aesthetic and con-
cise visualization. Network layout can also be regarded as a com-
plex variant of node-link layouts. Due to its large-scale charac-
teristics of nodes and edges, network layout usually leads to con-
fusion and affects aesthetics. Incremental process [ 10] or human-
centered method [115] bring a new aspects to network layout.

Hierarchical Edge Bundling graph and Chord graph [116]
are also usually used to visualize relationship networks. They
also have nodes and links but limit their position in fixed ar-
eas, which increases the difficulty of layout optimization. To
improve the readability of circular layout, certain studies pro-
pose aesthetic metrics [117], [118] including angle and edge
length variance [118]. For dynamic networks, one type of circu-
lar MSV technique [119] is applied to alleviate visual confusion
by formulating a linear assignment problem of node and edge.
This method visualizes time series data as a chord graph.
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Node-Link Graph Layout is also used in various types of
data analysis scenarios such as collections relationships [121],
storyline [128], sports [26], medical [54], connections between
neural structures [139], time series event sequences [18], and
timeline layout in field generation [123].

Set visualization usually needs to present relationships among
sets and elements, it can also be regarded as a type of node-link
layout. To reduce the visual burden in set visualization, mathe-
matical optimization could help minimize cluster overlap [121]
and the number of cluster [137]. A special type of set is the
dynamic set [126], [140], which formulates the problem as a
set cover problem to optimize the order of dynamic clusters,
and simplifies objective function into a linear combination of
penalty functions.

Many papers regard elements and their relationships in visu-
alization as nodes and links to employ optimization models in
their layout. It could also be regarded as a type of node-link
layout. Classical examples regard events [18], [120], cluster
groups [54], and player position [26], which are treated as nodes
and optimized in visual layout.

Cartographers often use flow maps to illustrate the movement
of objects from one location to another, such as human volume
in migration and the number of goods being traded. Flow maps
reduce visual clutter by merging edges [141] to show large-scale
edges clearly, which could be regarded as a type of node-link
graph with edge merging. One of the most classic examples is
the storyline.

The storyline is a specialized horizontally-oriented node-link
graph. The storyline layout algorithm [128] is developed to
portray the temporal dynamics of social interactions, movies,
and story plots. The main objective functions in their optimiza-
tion model contain line crossings and wiggles. To address the
increasing complexity and scalability of stories, StoryFlow [129]
generates an aesthetically appealing storyline visualization, as
shown in Fig. 5(a). iStoryline [124] optimizes and improves the
hand-drawn storyline by layout optimization effectively.

Apart from storylines, flow maps also have wide-ranging
applications in temporal data visualization and are similar to
storylines. Many works optimize the flow map layout to visu-
alize competition and cooperation of social media topics [125]
and track the evolution of medical pattern records [134]. The
biggest difference between flow maps and storylines is that the
width of strips in flow maps is changeable, which increases the
difficulty of flow map layouts. However, many papers improve
and extend layout metrics from an aesthetic perspective such as
wiggle [131], sine illusion [132], and crossing area [127].

C. Geographic Map Layout

Geographic Map Layout is one of the most commonly used
methods of representing geographic information on a two-
dimensional plane. We choose route maps & metro maps as
typical instances, since they are commonly seen in geographical
visualization and the data structure behind them could be charac-
terized as a vectorized format. Thus, mathematical optimization
is usually integrated into the process of constructing, adjusting,
and refining the layout for route maps & metro maps.
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One of the important problems in route maps is deformation.
Route map merely deals with the road segments between the
origin and the destination point, while ignoring other areas may
result in severe map deformations such as route displacement.
There could be large deformations in other areas if only fo-
cusing on the route between two points. Thus, many works
have analyzed and studied this problem. They use different
but applicable mathematical solution models for different usage
scenarios and optimization purposes. To enhance the feasibility
and readability of route maps, many works utilize mathemati-
cal optimization models to avoid the building occlusion [145],
render route maps in real-time [146], and generate destination
maps automatically [147]. Furthermore, other works avoid large
distortions in focus area layout of the route map [148] and
integrate spatio-temporal data into the visual component into
the original route map by enlarging the route and embedding
time displays in the road map [149].

Metro maps is a realistic application of geographic maps.
The layout nodes, lines, and labels together in metro maps
have become a focal point. In metro maps, a basic idea is
to layout the node and line on the octilinear grid [150]. To
simplify the process of metro map layout, automatic metro map
generation [151] is useful and has wide applications. Other
studies, such as deformation [152] and interactive editing [153],
are more concerned with interaction with metro map navigation.
We will cover them to Interactive Exploration & Analysis (see
more details in Section V).

To combine more information in geographic map visual-
ization, many works use visual metaphors in geographic map
layouts such as metro map metaphor [142], Necklace map [154],
and shorthand line [155]. Jacobsen et al. [ 142] design a novel tool
for visualizing set data as a metro map metaphor and formulate
this problem as TSP in Fig. 5(c). Other works arrange data in
aring to visualize country data [154], or simplify geographical
graphs to concise curve metaphors [155]. These works use novel
metaphors to summarize geographical information. Geographic
map layouts combine geographic information and get layouts
by discrete optimization models, which provide a wide range of
research opportunities and trends.

D. Hierarchical Structure Layout

Hierarchical Structure Layout visualization can be divided
into two types: filling-based and linking-based. The layout of
visualization can be optimized by mathematical optimization
models to relax visual clutter to intuitively illustrate hierarchical
information.

There are two main layout methods for filling-based visual-
ization: rectangular-based and radial-based. In the rectangular-
based layout, the basic visualization form is treemap. Many
works extend and apply treemap to visualize uncertainty data
as treemap [156] and represent search results as a hierarchical
reference map [157]. The other is the radial-based layout, the
radial-based layout is more intuitive and shows the root clearer.
Examples of this layout include the radial tree map [158] and
TreeNetViz [159]. Both works visualize hierarchical data clearly
and minimize the overlap and crossing to optimize layouts.
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For linking-based visualization of hierarchical structure lay-
out, the structure helps simplify complex graphs and make them
compact. Linking-based techniques use lines to link the elements
which are similar to node-link techniques. Many techniques
or metrics in node-link layouts are employed to optimize lay-
outs, such as force-directed [160], edge number [161], edge
length [135], and line crossing [122]. Besides, many works ex-
plore the variation of hierarchical structure or encode hierarchi-
cal information in other visualization. These works could utilize
metro maps as a metaphor [162] or help track the evolution of
text corpus [163].

In conclusion, filling-based methods can make full use of
the space of graphs while the link-based method can visual-
ize hierarchical structure intuitively. Filling-based methods can
utilize optimization models to divide and deform the space
of hierarchical structure. Linking-based methods can combine
optimization models to use the space of graphs for visualization
in a more aesthetic and compact way.

E. Perception & Color

Perception metrics are usually used to assess the effectiveness
of visual encoding, whereas coloring is a necessary phase in
representation. This minor category is related to mathematical
optimization because color mapping can be optimized to a more
aesthetic form in the guideline of perception metrics.

Perception metrics can usually guide optimization models
to generate a fine-grained layout. Researchers have proposed
perceptual metrics for this purpose, such as comparing sym-
metry metrics [164] and optimizing quality metrics of parallel
sets [165].

Color assignment has a strong influence on the visual sep-
arability of class structures involving the classical Assignment
Problem [7] and can be transformed to a specific discrete math-
ematical optimization model. Many researchers aim at color as-
signment optimization to make color more discriminable [144],
[166] or increase diversity [167] and separability [143] in
Fig. 5(e). Inspired by the diversity aspect of color [167], a color
map is established [143] for categories in scatter plots and assign
colors to maximize differentiation in Fig. 5(d). Many works
assign color to present visualization elements more significant
such as nodes in graphs [168], events in temporal data [169],
cluster groups in maps [170], and relaxed dense graphs [171].
Other works [172] use QP based on spatial context information
to adjust the coloring results of active learning.

Color mapping is a crucial technique in visualization. Apart
from the color assignment for categorical data, many researchers
optimize color in continuous color space. These works aim at
hue-preserved color blending [173], dynamic multi-scale color
mapping [174], data-driven scalar field colormap [175], and
colormap with data equality [176] by point layout in color space.
Because of the continuity of their color space, they could use
methods with gradients to solve the optimization model.

F. Rendering

Apart from the achievements in visual analytics, mathe-
matical optimization also contributes to the development of
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Fig. 6. Example papers in Rendering: (a) Path optimization for scene il-
lumination in different viewpoints [177]. (b) A unified opacity optimization
framework integrated different geometry types [178]. (c) Comparison with
preview works (left), the right work [179] using Fourier approximation to
optimize opacity. (d) Overview of high-resolution 3D object generation with
topology optimization [180].

volume rendering, which plays a crucial role in the field of
visualization. Based on the usage scenario of mathematical
optimization in volume visualization, the mathematical opti-
mization works in volume rendering can be classified into two
categories: Pipeline-based optimization and Application-based
optimization.

We define pipeline-based optimization visualization as the
works in which mathematical optimization has been applied
to optimize the pipeline of volume rendering, including the
improvement of lighting, transfer function, color, opacity, etc.
In volume visualization, users perceive the structure with dif-
ferent opacities. Mathematical optimization can be employed
to compute feature visibility by assigning opacity [181], opti-
mizing opacity and color transfer functions [182], and assess-
ing the transfer function by the voxel visibility optimization
model [183]. Opacity optimization also gets attention in flow
field visualization. Giinther et al. [178] optimize the opacity of
the 3D vector field by handling the occlusion between different
geometries uniformly in Fig. 6(b). Weiss and Westermann [184]
optimize all continuous parameters of the differentiable direct
volume rendering (DiffDVR), including viewpoint selection,
transfer function reconstruction, density reconstruction, and
color reconstruction. In direct volume rendering, other works op-
timize volume rigid registration [185], compute transfer function
in direct volume rendering [186], [187], and design an automatic
transfer function framework [188]. To accelerate the rendering
and computation, many works utilize mathematical optimization
models such as Fourier approximation optimization [179] and
Monte Carlo strategy [189] in Fig. 6(c). In addition to applying
to direct volume visualization, mathematical optimization is
applied to implicit volume rendering recently. Deep learning
is popular and used in Lumigraph rendering [190], 3D shape
rendering [191], and scene reconstruction [192].

We consider application-based optimization visualization as
those studies take advantages of mathematical optimization to
process volume data, such as geometric shape deformation, vol-
ume structure refinement, and important region extraction, rather
than applying it to volume rendering theory and framework.
Towards better direct volume rendering, many works aim at
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Fig. 7. The basic methodological paradigm and examples in Interactive Ex-
ploration & Analysis. (a) Compared with hyperbolic fisheye (left), the right
one [205] reduce edge confusion. (b) Compared with original layout, distinguish
amixture of diverse edge bundling after user interaction [208]. (c) Optimize label
position after users focusing [201].

feature extraction and computation by dictionary learning [193]
and encoder-decoder structure [194]. On the other hand, math-
ematical optimization shows a wide application in 3D structure
generation, many works utilize mathematical optimization to
preserve shape compliance [180], compressive sensing in dy-
namic tomography [195] and volume reconstruction [196], even
the medical lesion localization [197]. Firefly [177] optimizes the
path of viewpoint change in rendering by using multi-objective
optimization to balance rendered scene and path properties, as
shown in Fig. 6(a). In field visualization, mathematical opti-
mization could schedule parallel load [198], reconstruct the
noise-filtered scalar field [199].

V. INTERACTIVE EXPLORATION & ANALYSIS

In this section, we conduct a comprehensive literature re-
view on the interaction with mathematical optimization, since
the interaction is a vital component in visualization after data
transformation and representation. Interaction methods in visu-
alization can be divided into selection, reconfiguration, encode,
filter, connect, abstract/elaborate, navigation, etc. [200]. Based
on the methods and objectives of interactions that integrate math-
ematical optimization, we summarize interaction methods into
three categories as Navigation, Filtering, and Reconfiguration,
which are introduced as follows. We also summarize the basic
methodological paradigm of Interactive Exploration & Analysis
in Fig. 7.

A. Navigation

Navigation methods provide an overview to help users ac-
cess insights of visualization charts. During visual exploration,
navigation often assists users in browsing visual elements or
accessing the overall results of visualization charts initially.
Then users conduct a deeper interactive exploration based on
the navigation results. We introduce how to integrate math-
ematical optimization in navigation such as zoom, pan, and
focus+context.

Zooming in or out in visualization charts is a widely-used
interaction method to help users access insights into data. While
in the zooming progress, the visual analysis burden such as
deformation of graphs and overlaying of visual elements may
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need to be solved or relaxed. In recent years, integrating math-
ematical optimization into the zooming interaction attracts the
attention of researchers in many aspects such as layouting more
labels in graphs [201], expanding routes in maps [202], and
reducing the loss of context information on a small-screen [203].

Panning is to move visual elements from one to another
position, which is helpful for users to compare neighbors or
focus on one part of visualization charts. During the process
of panning visual elements, the overlapping problem appears
frequently, which results in researchers employing mathemat-
ical optimization models to relax the overlapping/collision of
graphs. These works relayout treemap interactively after users
panning [204].

Combining zooming and panning visualization charts can
help users figure out overall patterns or access insights in sample
charts. However, in complicated visualization charts, relying
solely on pure zooming and panning proves inadequate for
scenarios like large-scale graph visualization [205], because
it fails to balance the point focusing and context accessing
effectively. To relax this issue, researchers propose a combined
interaction method named focus+context, such as fisheye. As
the result shown in Fig. 7(a), Wang et al. [205] layout points
in the fisheye diagram by quadratic optimization to preserve
the structure of graphs. Researchers also focus on improving
occlusion problems in traditional fisheye by multi-objective
optimization during graph scaling fisheye [206]. Apart from the
fisheye visualization, focus+context is also used in the metro
map to relayout points and labels by a nonlinear optimization
model after the users focuses [152] and deform the focus region
by optimization to explore volume data more clearly in scientific
visualization [207].

B. Filtering

Filtering helps users focus on their data of interest and mine
the details of patterns by manipulating data with selecting,
brushing, querying, etc. Filtering data in visualization is a
well-established method to help users obtain further insights,
particularly users who obtain an overview and conduct further
analysis.

Pure filtering data hardly requires mathematical optimiza-
tion, while researchers need to face mathematical optimization
requirements in many specific scenes such as accelerating the
result computation [209] and reducing the search space [210].
For example, during the process of filtering and selecting data
based on topic modeling, Kim et al. employ a hierarchical
NMF model to accelerate the computation of topic information,
which is solved by a rank-2 non-negative matrix factorization
algorithm [209]. To reduce search space for a topic model, they
conduct further work which proposes an NMF model to feed
target topic information after data filtering [210] and solve it by
a rank-2 algorithm.

Filtering interaction technique itself may not need a compli-
cated model, while employing mathematical optimization to ac-
celerate the data computation [209], reduce search space [210],
and provide candidate projection [210] is an effective method
when users need interactive data filtering.
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C. Reconfiguration

Reconfiguration allows users to interactively operate the vi-
sualization charts following users’ requirements. Reconfiguring
visualization charts helps users access data insights and mine
different patterns in visualization that they are familiar with or
want to explore. For complicated requirements, direct operations
(e.g., moving positions, adjusting colors, and changing presen-
tation forms) hardly result in a fine visualization chart for users.
Mathematical optimization is required in reconfigurations to sat-
isfy users’ diverse needs and reflects human-in-the-loop [211].

In recent years, mathematical optimization is integrated into
many visualization reconfiguration scenarios such as interactive
edge bundling [208], metro map layouting [153], network struc-
ture adjusting [212], dimensions reduction [213], and cluster
computing/analysis [214], [215], [216]. For example, as the edge
bundling result, Wang et al. [208] manipulate and compute the
bundling results interactively to help users interactively fine-tune
the bundling results in Fig. 7(b). Similarly, in interactive layout,
mathematical optimization could reconfigure the layout with
users’ interaction. Many works aim to help edit metro maps
with users’ manipulation [153] or avoid visual clutter in large
force-layout node-link graphs based on the users’ arranged local
structure. In the clustering aspect, a KL divergence term is
integrated into the optimization model to help users reconfigure
clustering results [214], which is solved by a trust region method
based on interior points.

Mathematical optimization is already employed in but is
not limited to navigation, filtering, and reconfiguration. Even
though, in recent times, researchers are starting to elicit deeper
investigation to optimizing interaction with mathematical opti-
mization models to provide users a more comfortable interaction
and help users obtain insights into data. However, employing
mathematical optimization in interaction methods still needs
more exploration in the future.

VI. DISCUSSION

In this section, the challenges and open problems are dis-
cussed to help readers realize how mathematical optimization
performs well in visualization and visual analytics.

A. Challenges

According to different aspects of future work and challenges,
we divide challenges and future work into six categories: model
generalizability, method scalability, application field, qualita-
tive/quantitative evaluation, visual interaction, and theoretical
research. We summarize the future work and challenges in Fig. 8.

In Fig. 8, model generalizability and method scalability
account for the top two categories in future work and chal-
lenges. An important challenge is to extend models to adapt
to high-dimensional or other complex structure data. Another
challenge is generating a robust layout by enhancing constraints
and optimizing parameters. We summarize challenges as ap-
plications that aim to build a complete system in the future.
Qualitative/quantitative evaluation and visual interaction are
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Fig. 8. The bubble chart of six challenges. The size of bubbles represents
the amount of researcher emphasis. Labels show key words of each challenge
category. The number at the top of bubbles represents the number of challenges.

also key challenges accompanied by perception study and inter-
active exploration. Nevertheless, we summarize the challenge
of theoretical research with the convergence of algorithms and
interpretability of models.

Model Generalizability: Model generalizability involves gen-
eralizing the model to suit different data types or higher data
dimensions. The extension of different data types is one of
the most critical challenges which aims to apply mathemati-
cal optimization to more data types [179]. In Data Enhance-
ment & Transformation, different mathematical optimization
models can help deal with different data types. Mathematical
optimization models can identify, extract and refine the key
information in data such as matrix decomposition, these models
could generalize to handle temporal data. In Grid & Rectangle
Layout, mathematical optimization models utilize the shape of
rectangles to constrain the position of elements in horizontal and
vertical directions. As for the hexagonal grid and other polygon
grid layouts [30], [123], the constraints are more complex. Data
dimension, as another key challenge, aims at extending models
to high-dimensional data. An increase in data dimension brings
more variables and constraints, which improves dimensions of
search space and increases the difficulty of solving optimization
models finally. On the other hand, mathematical optimization
models may play a more crucial role in dimension reduction
and data refinement to extract key information from a higher
data dimension.

Method Scalability: The most important challenge is to mod-
ify constraints for better consistency in constraints scalabil-
ity. In Representation & Rendering, the confusion and over-
lap [80], [92], [208] decrease the aesthetics of visualization
with the development of data volume. Modifying constraints in
mathematical optimization models may result in a fine layout.
Besides, numerous complicated optimization models, such as
optimization models with nonlinear terms in constraints, are
often difficult to solve or obtain a satisfactory approximate
solution within a limited time [90], [101]. However, due to
the increase of data volume and the requirement for timely
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interaction, it is necessary to find a more suitable mathematical
optimization model and a faster solution method [185]. Faced
with this challenge, many strategies can perform well such
as simplifying the problem, multi-stage optimization solution
method [217], and stochastic optimization [218]. For example,
in metro map layout, different visualization elements will be
layouted in multiple stages, complex constraints in this problem
control the position relationship, stochastic optimization method
may help solve the model rapidly.

Similarly, parameter scalability is one of the important things
in optimization. A weighted linear combination is a popular
technique to combine two or more objective functions in a
multi-objective optimization model. These objective functions
usually lead to different visual effects with different weight
parameters [208]. Suitable parameters could be convincing in
parameter scalability. Computation scalability is also important
for much visualization research which needs real-time inter-
action [103]. In fact, parallel computing is an alternative to
improve computing speed and time performance [55], [193].
On the one hand, employing more computing resources may
decrease computation time. On the other hand, many numerical
optimization methods can decrease computation operations to
help mathematical optimization models perform well. Data
scalability is a critical challenge that is faced by many visu-
alization researchers. Data scalability often brings computation
scalability. For example, in Representation & Rendering, the
effect of layout algorithms based on mathematical optimization
decrease when the data scale increases quickly [219].

Application Field: Exploring demand in application areas
and combining mathematical optimization and visualization
techniques with a specific problem are still the major chal-
lenge. Applications include applying mathematical optimization
models and methods mentioned above to specific problems,
building complete visualization systems and pipelines for public
use, and productization. In previous studies, many researchers
have put an emphasis on applying mathematical optimization
in visualization, which results in a fine visualization effect.
However, building a production-level application [152], [169],
constructing an automatic algorithm module [154], [220], and
designing and implementing a complete pipeline [69] are po-
tential challenges and future work. For example, many layout
frameworks based on mathematical optimization models could
help visualization researchers generate a layout automatically.

Qualitative/Quantitative Evaluation: Examination of ap-
proaches or systems and comparison of methods can evaluate
disadvantages and limitations of works. Evaluation includes
case study to ascertain the advantages of their model and user
evaluation to help measure the value of techniques. The dif-
ference between qualitative and quantitative evaluation lies in
whether the evaluation results are obtained by data processing
and analysis. Quantitative evaluation has quantifiable evalua-
tion tasks and questions, it often analyzes the result data by
numerical comparison and statistical method. For instance, the
effect of many visual layouts at different data scales requires
further quantitative evaluation. Different evaluation metrics are
integrated as objective functions in mathematical optimization
models such as line crossing and wiggle, as we mentioned in
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Table III. More quantitative evaluation metrics in each visual-
ization pipeline need to be explored. For example, in Interactive
Exploration & Analysis, many studies employ user interaction
to assist mathematical optimization models in achieving better
layouts, and the effect of these interactions is worthy of further
evaluation. The deformation between and after interactions,
and time performance may be important quantitative evaluation
metrics in this visualization phase [202].

Visual Interaction: This category aims at exploring data by
interaction and providing users with different forms of inter-
action techniques and visual encoding. For example, in Rep-
resentation & Rendering, many optimization models of visual
layout contain complex expressions such as nonlinear terms. It
is difficult to obtain a fine solution in a short time, which leads
to the challenge of real-time performance when interacting with
visual layouts. On the other hand, many visual layouts can be
fine-tuned by the users to result in a pleasing visual effect, math-
ematical optimization models can help generate a fine-tuned or
incremental layout [206]. Mathematical optimization combined
with human-centered optimization through visual interaction
can help result in a finer layout. For example, multi-objective
optimization faces the challenge of selecting and comparing
two or more objective functions. Visual interaction can in-
volve people in the process of optimization which can combine
the mathematical optimization model with human intervention.
Another challenge is real-time interaction and exploration, in
Representation & Rendering, many layout models cost much
time in computation which makes real-time interaction difficult
on these layout pipelines [103]. Various mathematical optimiza-
tion methods such as numerical optimization methods could
help accelerate the computation. In Interactive Exploration &
Analysis, many interactive techniques, such as zooming, deform
the visualization effect to varying degrees. Computing only
the deformed local parts by mathematical optimization models
may reduce the amount of computation to support real-time
interaction.

Theoretical Research: Theoretical research encompasses al-
gorithm convergence, model interpretability, and behavior in-
terpretation. Algorithm convergence is a crucial challenge in
this category. In many mathematical optimization problems, the
convergence and convergence speed of the algorithm determine
whether the algorithm can obtain a high-quality solution in an ac-
ceptable time. Many studies overlook the convergence and con-
vergence speed of the optimization algorithms they employ [80],
[87], [183]. In fact, faster convergence algorithms reduce the
solution time and support real-time interaction in visual analysis
systems. Another relevant aspect is model interpretability [105],
deep learning has been widely used in visualization research in
recent years. The basis of deep learning algorithms is related to
mathematical optimization, which can be combined with visual
analytics for model interpretability of deep learning such as
the reduction of neurons [52]. Behavior interpretation is also
important for the results of mathematical optimization mod-
els [28]. For example, how mathematical optimization models
extract the key information from a dataset and why this in-
formation can represent original data in Data Enhancement &
Transformation.
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B. Open Problems

To connect mathematical optimization models and visualiza-
tion, we summarize open problems (6W 1H) as follows:

Why is there no unified mathematical optimization model
that can be integrated into visualization and visual analytics
research? In mathematics, physics, and other areas of natural
science, researchers and scientists often pursue a unified model
to describe research problems. Is there such a possibility in
visualization and visual analytics? In fact, mathematical opti-
mization utilizes strict mathematical language to describe the op-
timization problem, which needs clearly-defined requirements.
Visualization and visual analytics are usually combined with dif-
ferent application domains. It is difficult for them to summarize
and refine unified requirements, which increases the difficulty
of integrating a unified mathematical optimization model. The
component-based modeling idea may help deal with various and
complex requirements in future research.

What external aid can we obtain and what internal infor-
mation may we lose through mathematical optimization? On
the one hand, mathematical optimization brings the precise and
strict optimal for visualization and visual analytics. Quantitative
metrics in visual layout could help users find the optimal visu-
alization instead of qualitative evaluation. On the other hand,
mathematical optimization loses information in different areas
such as dimension reduction and data refinement. In these areas,
all mathematical optimization could do is to minimize this
loss as much as possible, but it is still unavoidable. Reducing
information loss is always a challenge in optimization research.

How to involve human-in-the-loop in mathematical optimiza-
tion? As we mentioned in Section I, mathematical optimiza-
tion aims to “find an optimal” in a finite or infinite space,
implying that mathematical optimization models and solution
methods would solve the optimization problems without human
intervention. In fact, one vital aspect is human-centered opti-
mization. With human-in-the-loop intervention, mathematical
optimization could be seen as semi-automated optimization,
and perform better than algorithm-centered optimization. As a
possible future work, users could intervene model’s decisions in
analysis tasks by comparing and selecting objective functions
in a multi-objective optimization model, and understanding the
process of solution with the integration of visualization.

When can we employ mathematical optimization more cost-
efficiently? In fact, any process with decisions involves opti-
mization. Mathematical optimization often has high costs during
usage, including time costs and learning costs. Novices often
spend significant amounts choosing an appropriate optimization
model. If researchers need to determine the best from several al-
ternatives, and the requirements of problems are determined and
measurable, mathematical optimization could help researchers
determine the best.

Where in the visualization process could mathematical op-
timization be applied? As we mentioned in Section II, mathe-
matical optimization could be employed in different phases of
the visualization pipeline. In fact, mathematical optimization
would play a different role while utilized in different phases.
For example, mathematical optimization in Data Enhancement
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& Transformation could extract the key information as much as
possible, where the clean data reduces the burden and make Rep-
resentation & Rendering easy. In Representation & Rendering,
the visual encoding and mapping combined with mathematical
optimization could result in a fine visualization, which avoids a
lot of fine-tuning in Interactive Exploration & Analysis.

Which solution method could be more efficient in mathemat-
ical optimization models for visualization? In real-time visu-
alization, various solution methods could be used in different
scenes. Due to the time cost of computation, many solution meth-
ods could not obtain an optimal solution quickly. Researchers
could pay more attention to the incremental solution method in
the future. incremental algorithms could generate a relatively
acceptable solution to bring users an overview. The algorithm
then continue computing a more optimal solution while in-
teracting with the visualization. Parallel computing is also an
efficient method.

Who can benefit from mathematical optimization for visual-
ization research? In the visualization pipeline, many users par-
ticipate in the use of mathematical optimization. Model builders
utilize mathematical optimization to obtain an optimal solution
with the guide of specific goals and requirements. System users
are influenced by mathematical optimization. For example, users
precept the pattern enhancement or visualization deformation
with interaction, they could benefit from mathematical optimiza-
tion but they may not perceive the existence of a mathematical
optimization model. On the other hand, people with vision
impairment may not benefit from mathematical optimization
easily, which also guides the future research direction.

VII. CONCLUSION

In this paper, we survey 212 papers about mathematical
optimization in visualization and visual analytics. We categorize
them into three components of the visualization pipeline and the
corresponding minor categories. We summarize and categorize
papers into different mathematical optimization models and
solution methods. We also discuss challenges and seven open
problems to provide a forward-looking perspective. Finally, we
design a web-based exploration browser to facilitate locating
papers of their interests. We believe our survey can provide a
novel insight into the application of mathematical optimization
in data visualization.
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